Jump to Content

HomeGuidesAPI and SDK Reference
Register to deepset CloudLog in to deepset Cloud

Register to deepset CloudLog in to deepset Cloud

HomeGuidesAPI and SDK Reference
Search

Loading…

Getting Started
	What's New	Release 2024.3
	Release 2024.2
	Release 2024.1
	Release 2023.12
	Release 2023.11
	Release 2023.8
	Release 2023.7

	What's deepset Cloud?
	Quick Start Guide
	Working in deepset Cloud
	Basic Concepts
	Use Cases	Use Case: Generative AI Systems
	Use Case: An Extractive Question Answering System
	Use Case: A Document Search System

	Pipeline Examples	Generative Question Answering Pipelines
	Document Search Pipelines
	Extractive Question Answering Pipelines
	Summarization Pipelines

	Third-Party Software

Tutorials
	Learn the Basics	Tutorial: Building Your First Question Answering App
	Tutorial: Building Your First Document Search App
	Tutorial: Building a Summarization System with a Large Language Model
	Tutorial: Uploading Files with Metadata through SDK CLI
	Tutorial: Creating an Experiment for a QA Pipeline
	Tutorial: Creating an Evaluation Dataset for Document Search

	Learn More Advanced Features	Tutorial: Building a Robust Generative Question Answering System
	Tutorial: Building a Search App Through SDK
	Tutorial: Uploading Files with Python Methods
	Tutorial: Demoing Your App
	Tutorial: Fine-Tuning the Reader Model in SDK

How-To Guides
	Designing Your Pipeline	Upload Files
	PreProcessing Data with Pipeline Nodes
	Create a Pipeline
	Edit a Pipeline
	Deploy a Pipeline
	Troubleshoot Pipeline Deployment

	Evaluating Your Pipeline	Upload an Evaluation Set
	Create an Experiment Run
	Review Your Experiments
	Update an Experiment Run
	Share a Pipeline Prototype
	Collect User Feedback
	Guidelines for Onboarding Your Users
	Export Users' Feedback
	Label Your Data
	Label Answers

	Optimizing Your Pipeline	Improving Your Document Search Pipeline
	Improving Your Question Answering Pipeline
	Handling Different Query Types
	Boosting Retrieval with OpenSearch Queries

	Testing Your Pipeline	Test Your Pipeline in Playground
	Add Search Filters Through Metadata
	Filtering Logic
	Set Default Pipeline

	Productionizing Your Pipeline	Use Your Pipeline in Your Target App
	Monitor Pipeline Performance
	Synchronize Your Data
	Check the Groundedness Score
	Understand Your Pipeline Usage

	Working with Large Language Models (LLMs)	Engineering Prompts
	Prompt Engineering Guidelines
	Using Hosted LLMs in Your Pipelines

	Setting Up Your VPC	Connect Your OpenSearch Cluster
	Connect Your S3 Bucket

	Using the Python SDK	Install the SDK
	Log in to SDK

	Managing Access	Manage Users
	Connect to Model Providers
	Generate an API Key

Concepts
	About Pipelines
	Pipeline Nodes	AnswerDeduplication
	CNAzureConverter
	InterleaveDocuments
	DeepsetCloudDocumentStore
	EntityExtractor
	FileDownloader
	FileTypeClassifier
	JoinAnswers
	JoinDocuments
	PDFToTextConverter
	PreProcessor
	PromptNode
	RetrievalScoreAdjuster
	ReturnError
	Shaper
	QueryClassifier
	Ranker
	Reader
	ReferencePredictor
	Retriever
	TextConverter

	About Experiments	Evaluation Metrics
	Evaluation Datasets
	Labeling Projects
	Guidelines for Labeling Data
	Relevance Scores

	Data Flow in deepset Cloud
	Language Models in deepset Cloud

Learn
	Generative Question Answering
	Document Search
	Extractive Question Answering
	Language Models	Large Language Models Overview

PDFToTextConverter
Before you can run a search on your PDF files using a deepset Cloud pipeline, you must convert these files into Document objects. Use PDFToTextConverter`to convert PDF files to plain text Document objects.

Suggest Edits

PDFToTextConverter extracts text from PDF files and returns Documents. These Documents are then stored in the DocumentStore. Documents are what the pipeline uses for search.

File conversion happens only once when you deploy your pipeline. Your files are not converted every time you search. If you add a file after you deploy a pipeline, only this file is converted.

PDFToTextConverter takes File as input and produces Document as output.

Basic Information

	Pipeline type: Used in indexing pipelines.
	Nodes that can precede it in a pipeline:: FileTypeClassifier
	Nodes that can follow it in a pipeline: PreProcessor
	Node input: File
	Node output: Document
	Available node classes: PDFToTextConverter (uses xpdf to extract text from PDF files)

Usage Example

YAML
...
components:
 - name: PDFConverter
 type: PDFToTextConverter
 params:
 	remove_numeric_tables: True
...

pipelines:
here comes the query pipeline which we skipped in this example
 - name: indexing
 nodes:
 - name: FileTypeClassifier
 inputs: [File]
 - name: PDFConverter
 inputs: [FileTypeClassifier.output_2] # output_2 is where PDF files are routed
 - name: Preprocessor
 inputs: [PDFConverter]
...

Arguments

You can specify the following arguments for PDFToTextConverter:

	Argument	Type	Possible Values	Description
	remove_numeric_tables	Boolean	True
False (default)	Deletes numeric rows from tables (uses heuristic to remove rows with more than 40% digits and not ending with a period).

You can find this useful if your pipeline has a Reader that can't parse tables.

Mandatory.
	valid_languages	A list of strings	A list of languages in the ISO 639-1 format. 	Tests for encoding errors for the languages you specify.

Optional.
	id_hash_keys	A list of strings	-	Generates the document ID from a custom list of strings that refer to the document's attributes. For example, to ensure that there are no duplicate documents in your document store, you can modify the metadata of a document by passing: ["content", "meta"] to this field.

Optional.
	sort_by_position	Boolean	True
False (default)	Specifies if the extracted text should be sorted by its location coordinates or by the logical reading order.
True - Sorts the text first by its vertical position and then by its horizontal position.
False - Sorts the text according to the logical reading order in the PDF.

Mandatory.
	ocr	Literal	auto
full

Default: None	Specifies if optical character recognition (OCR) should be used to extract text from the images in the PDF.
auto - Uses OCR only to extract text from images and integrate them into the existing text.
full - Uses OCR to extract text from the entire PDF.

Optional.
	ocr_language	String	Check supported languages.

Default: eng	Specifies the language to use for optical character recognition. To combine multiple languages, pass a string with the language codes separated with a plus ("+"). For example, to use English and German, pass eng+deu.
	multiprocessing	Boolean	True (default)
False	We use multiprocessing to speed up PyMuPDF conversion.
True - Uses the total number of cores. To specify the number of cores to use, set this value to an integer.
False - Disables multiprocessing.

Updated 3 months ago

Related Links

	Basic Concepts
	Quick Start Guide

	Table of Contents
		Basic Information
	Usage Example
	Arguments

 	Open Source
	
 Haystack

	
 Annotation Tool

 	Resources
	
 Models

	
 Datasets

	
 FARM

 	Company
	
 Blog

	
 About

	
 Jobs

 Building a semantic layer for the modern tech stack — driven by the
 latest NLP and open source.

 	

	

	

	

	

 	
 Privacy

	
 Imprint

 © 2022 deepset GmbH. All rights reserved.

