SentenceTransformersDocumentEmbedder Parameters

Learn how you can configure SentenceTransformersDocumentEmbedder to calculate embeddings for documents.

YAML Init Parameters

Parameter

Type

Possible values

Description

model

String

Default: sentence-transformers/all-mpnet-base-v2

Local path or ID of the model on Hugging Face.
Required.

device

ComponentDevice

Default: None

Overrides the default device used to load the model.
Optional.

token

Secret

Default: {"type": "env_var", "env_vars": ["HF_API_TOKEN"], "strict": False}

The API token used to download private models from Hugging Face.
Optional.

prefix

String

Default: "" (empty string)

A string to add at the beginning of each text. Can be used to prepend the text with an instruction, as required by some embedding models, such as E5 and bge.
Required.

suffix

String

Default: "" (empty string)

A string to add at the end of each text.
Required.

batch_size

Integer

Default: 32

Number of documents to encode at once.
Required.

progress_bar

Boolean

True, False
Default: True

If True shows a progress bar when running.
Required.

normalize_embeddings

Boolean

True, False
Default: False

If True, the returned vectors have the length of 1.
Required.

meta_fields_to_embed

List of strings

Default: None

List of meta fields that will be embedded along with the document text.
Optional.

embedding_separator

String

Default: "\n"

Separator used to concatenate the meta fields to the document text.
Required.

trust_remote_code

Boolean

True, False
Default: False

If False, only Hugging Face verified model architectures are allowed. If True, custom models and scripts are allowed.
Required.


REST API Runtime Parameters

There are no runtime parameters you can pass to this component when making a request to the Search REST API endpoint.