Skip to main content

DeepsetAmazonBedrockChatGenerator

Generate chat responses using Amazon Bedrock models with deepset integration.

Basic Information

  • Type: deepset_cloud_custom_nodes.generators.chat.deepset_amazon_bedrock_chat_generator.DeepsetAmazonBedrockChatGenerator
  • Components it can connect with:
    • ChatPromptBuilder: DeepsetAmazonBedrockChatGenerator receives chat messages from a prompt builder.
    • AnswerBuilder: DeepsetAmazonBedrockChatGenerator sends replies to an answer builder.

Inputs

ParameterTypeDefaultDescription
messagesList[ChatMessage]A list of chat messages to send to the model.

Outputs

ParameterTypeDefaultDescription
repliesList[ChatMessage]Generated chat message responses from the model.

Overview

Use DeepsetAmazonBedrockChatGenerator to generate chat responses using Amazon Bedrock models hosted on deepset Bedrock account. This component provides access to various foundation models available through Amazon Bedrock, including Claude, Llama, and Titan models.

Usage Example

This is an example RAG pipeline using DeepsetAmazonBedrockChatGenerator with Amazon Bedrock models:

components:
bm25_retriever:
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'default'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20
fuzziness: 0

query_embedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2

embedding_retriever:
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'default'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20

document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate

ranker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8

meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id

answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm

ChatPromptBuilder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- _role: system
_content:
- text: "You are a helpful assistant answering the user's questions based on the provided documents. Do not use your own knowledge."
- _role: user
_content:
- text: "Provided documents:\n{% for document in documents %}\nDocument [{{ loop.index }}]:\n{{ document.content }}\n{% endfor %}\n\nQuestion: {{ query }}\nAnswer:"
variables:
required_variables:

generator:
type: deepset_cloud_custom_nodes.generators.chat.deepset_amazon_bedrock_chat_generator.DeepsetAmazonBedrockChatGenerator
init_parameters:
model: anthropic.claude-3-sonnet-20240229-v1:0
aws_region_name:
type: env_var
env_vars:
- AWS_DEFAULT_REGION
strict: false
generation_kwargs:
max_tokens: 1000
temperature: 0.7
streaming_callback:
boto3_config:
tools:

connections:
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
receiver: answer_builder.documents
- sender: meta_field_grouping_ranker.documents
receiver: ChatPromptBuilder.documents
- sender: ChatPromptBuilder.prompt
receiver: generator.messages
- sender: generator.replies
receiver: answer_builder.replies

inputs:
query:
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "answer_builder.query"
- "ChatPromptBuilder.query"
filters:
- "bm25_retriever.filters"
- "embedding_retriever.filters"

outputs:
documents: "meta_field_grouping_ranker.documents"
answers: "answer_builder.answers"

max_runs_per_component: 100

metadata: {}

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
modelstrThe Amazon Bedrock model identifier to use for generation.
aws_region_nameOptional[str]NoneAWS region name where the Bedrock service is accessed.
generation_kwargsOptional[Dict[str, Any]]NoneAdditional parameters for generation, such as max_tokens, temperature, top_p.
streaming_callbackOptional[Callable]NoneA callback function called when a new token is received during streaming.
boto3_configOptional[Dict[str, Any]]NoneConfiguration for the boto3 client.
toolsOptional[List[Tool]]NoneA list of tools the model can use for function calling.

Run Method Parameters

These are the parameters you can configure for the component's run() method. You can pass these parameters at query time through the API, in Playground, or when running a job.

ParameterTypeDefaultDescription
messagesList[ChatMessage]A list of chat messages to send to the model.