FastembedDocumentEmbedder
Compute document embeddings using Fastembed embedding models.
Basic Information
- Type:
haystack_integrations.components.embedders.fastembed.fastembed_document_embedder.FastembedDocumentEmbedder - Components it can connect with:
- Receives documents from
ConvertersorDocumentSplitterin an index. - Sends embedded documents to
DocumentWriterfor storage.
- Receives documents from
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | List of Documents to embed. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | List of Documents with each Document's embedding field set to the computed embeddings. |
Overview
FastembedDocumentEmbedder computes document embeddings using Fastembed embedding models. Fastembed is a lightweight, fast Python library built for embedding generation with support for most state-of-the-art embedding models.
The embedding of each document is stored in the embedding metadata field of the document. Use this component in an index to embed documents before storing them in a document store.
Compatible Models
You can find the supported models in the FastEmbed documentation.
Embedding Models in Query Pipelines and Indexes
The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.
This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.
Usage Example
This index uses FastembedDocumentEmbedder to embed documents before storing them:
components:
TextFileToDocument:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
store_full_path: false
DocumentSplitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: sentence
split_length: 5
split_overlap: 1
FastembedDocumentEmbedder:
type: haystack_integrations.components.embedders.fastembed.fastembed_document_embedder.FastembedDocumentEmbedder
init_parameters:
model: BAAI/bge-small-en-v1.5
cache_dir:
threads:
prefix: ""
suffix: ""
batch_size: 256
progress_bar: true
parallel:
local_files_only: false
meta_fields_to_embed:
embedding_separator: "\n"
DocumentWriter:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'default'
max_chunk_bytes: 104857600
embedding_dim: 384
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
policy: OVERWRITE
connections:
- sender: TextFileToDocument.documents
receiver: DocumentSplitter.documents
- sender: DocumentSplitter.documents
receiver: FastembedDocumentEmbedder.documents
- sender: FastembedDocumentEmbedder.documents
receiver: DocumentWriter.documents
inputs:
files:
- TextFileToDocument.sources
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| model | str | BAAI/bge-small-en-v1.5 | Local path or name of the model in Hugging Face's model hub, such as BAAI/bge-small-en-v1.5. |
| cache_dir | Optional[str] | None | The path to the cache directory. Can be set using the FASTEMBED_CACHE_PATH env variable. Defaults to fastembed_cache in the system's temp directory. |
| threads | Optional[int] | None | The number of threads single onnxruntime session can use. |
| prefix | str | "" | A string to add to the beginning of each text. |
| suffix | str | "" | A string to add to the end of each text. |
| batch_size | int | 256 | Number of strings to encode at once. |
| progress_bar | bool | True | If True, displays progress bar during embedding. |
| parallel | Optional[int] | None | If > 1, data-parallel encoding is used, recommended for offline encoding of large datasets. If 0, use all available cores. If None, don't use data-parallel processing, use default onnxruntime threading instead. |
| local_files_only | bool | False | If True, only use the model files in the cache_dir. |
| meta_fields_to_embed | Optional[List[str]] | None | List of meta fields that should be embedded along with the Document content. |
| embedding_separator | str | \n | Separator used to concatenate the meta fields to the Document content. |
Run Method Parameters
These are the parameters you can configure for the run() method. You can pass these parameters at query time through the API, in Playground, or when running a job.
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | List of Documents to embed. |
Was this page helpful?