VoyageDocumentEmbedder
Compute document embeddings using Voyage AI embedding models.
Basic Information
- Type:
haystack_integrations.components.embedders.voyage_embedders.voyage_document_embedder.VoyageDocumentEmbedder - Components it can connect with:
DocumentWriter:VoyageDocumentEmbeddercan send documents with embeddings toDocumentWriterto write them into a document store.DocumentJoiner:VoyageDocumentEmbeddercan send embedded documents to a joiner.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | A list of documents to embed. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents with embeddings stored in the embedding field. | |
| meta | Dict[str, Any] | Metadata about the embedding operation. |
Overview
Use VoyageDocumentEmbedder to create embeddings for documents using Voyage AI models. This component is typically used in indexes to embed documents before storing them in a vector database.
The embedding of each document is stored in the embedding field of the Document object.
Authorization
You need a Voyage AI API key to use this component. Connect deepset to your Voyage AI account on the Integrations page. For detailed instructions, see Use Voyage AI Models.
Usage Example
This is an example index with VoyageDocumentEmbedder for document embedding:
components:
converter:
type: haystack.components.converters.multi_file_converter.MultiFileConverter
init_parameters:
encoding: utf-8
cleaner:
type: haystack.components.preprocessors.document_cleaner.DocumentCleaner
init_parameters:
remove_empty_lines: true
remove_extra_whitespaces: true
remove_repeated_substrings: false
keep_id: false
splitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: sentence
split_length: 5
split_overlap: 1
split_threshold: 0
document_embedder:
type: haystack_integrations.components.embedders.voyage_embedders.voyage_document_embedder.VoyageDocumentEmbedder
init_parameters:
api_key:
type: env_var
env_vars:
- VOYAGE_API_KEY
strict: false
model: voyage-3
input_type: document
truncate: true
prefix:
suffix:
output_dimension:
output_dtype: float
batch_size: 32
metadata_fields_to_embed:
embedding_separator: "\n"
progress_bar: true
timeout:
max_retries:
writer:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'default'
max_chunk_bytes: 104857600
embedding_dim: 1024
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
policy: OVERWRITE
connections:
- sender: converter.documents
receiver: cleaner.documents
- sender: cleaner.documents
receiver: splitter.documents
- sender: splitter.documents
receiver: document_embedder.documents
- sender: document_embedder.documents
receiver: writer.documents
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| api_key | Secret | Secret.from_env_var('VOYAGE_API_KEY') | The Voyage AI API key. It can be explicitly provided or automatically read from the environment variable VOYAGE_API_KEY. |
| model | str | voyage-3 | The name of the Voyage model to use. See the Voyage Embeddings documentation for available models. |
| input_type | Optional[str] | None | Type of the input text. Set to "document" for indexing documents or "query" for search queries. When set, prepends an appropriate prompt to the text. |
| truncate | bool | True | Whether to truncate the input text to fit within the context length. If False, an error is raised when the text exceeds the context length. |
| prefix | str | "" | A string to add to the beginning of each text. |
| suffix | str | "" | A string to add to the end of each text. |
| output_dimension | Optional[int] | None | The dimension of the output embedding. Only supported by voyage-3-large and voyage-code-3 models. |
| output_dtype | str | float | The data type for the embeddings. Options: "float", "int8", "uint8", "binary", "ubinary". |
| batch_size | int | 32 | Number of documents to encode at once. |
| metadata_fields_to_embed | Optional[List[str]] | None | List of metadata fields to embed along with the document content. |
| embedding_separator | str | "\n" | Separator used to concatenate metadata fields to the document content. |
| progress_bar | bool | True | Whether to show a progress bar during processing. |
| timeout | Optional[int] | None | Timeout for Voyage AI client calls. If not set, it is inferred from the VOYAGE_TIMEOUT environment variable or set to 30. |
| max_retries | Optional[int] | None | Maximum retries if Voyage AI returns an internal error. If not set, it is inferred from the VOYAGE_MAX_RETRIES environment variable or set to five. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. You can pass these parameters at query time through the API, in Playground, or when running a job.
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | A list of documents to embed. |
Was this page helpful?