Skip to main content

CohereDocumentEmbedder

Calculate document embeddings using Cohere models. Document embedders are used to embed documents in your index.

Basic Information

  • Type: haystack_integrations.components.embedders.cohere.document_embedder.CohereDocumentEmbedder
  • Components it can connect with:
    • Converters and Preprocessors: CohereDocumentEmbedder can receive documents to embed from a converter, such as TextFileToDocument or a preprocessor, such as DocumentSplitter.
    • DocumentWriter: CohereDocumentEmbedder sends embedded documents to DocumentWriter that writes them into a document store.

Inputs

ParameterTypeDefaultDescription
documentsList[Document]Documents to embed.

Outputs

ParameterTypeDefaultDescription
documentsList[Document]Documents with their embeddings added to embedding field.
metaDict[str, Any]Metadata related to the embedding process.

Overview

CohereDocumentEmbedder uses Cohere models to embed a list of documents. It then adds the computed embeddings to the document's embedding metadata field. For a list of supported models, see the Cohere documentation.

Embedding Models in Query Pipelines and Indexes

The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.

This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.

Authorization

You need a Cohere API key to use this component. Connect deepset to your Cohere account on the Integrations page.

Connection Instructions

  1. Click your profile icon in the top right corner and choose Integrations.
    Integrations menu screenshot
  2. Click Connect next to the provider.
  3. Enter your API key and submit it.

Usage Example

Initializing the Component

components:
CohereDocumentEmbedder:
type: haystack_integrations.components.embedders.cohere.document_embedder.CohereDocumentEmbedder
init_parameters:

Using the Component in an Index

In this index, CohereDocumentEmbedder receives documents from DocumentSplitter and embeds them. It then sends the embedded documents to DocumentWriter that writes them into a document store. The index is configured to use the embed-english-v2.0 model, which means CohereTextEmbedder used in the query pipeline must also use the embed-english-v2.0 model.

components:
DocumentSplitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: word
split_length: 200
split_overlap: 0
split_threshold: 0
splitting_function:
DocumentWriter:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: Standard-Index-English
max_chunk_bytes: 104857600
embedding_dim: 1024
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
similarity: cosine
policy: NONE

CohereDocumentEmbedder:
type: haystack_integrations.components.embedders.cohere.document_embedder.CohereDocumentEmbedder
init_parameters:
api_key:
type: env_var
env_vars:
- COHERE_API_KEY
- CO_API_KEY
strict: false
model: embed-english-v2.0
input_type: search_document
api_base_url: https://api.cohere.com
truncate: END
use_async_client: false
timeout: 120
batch_size: 32
progress_bar: true
meta_fields_to_embed:
embedding_separator: \n
embedding_type:
TextFileToDocument:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
store_full_path: false

connections:
- sender: DocumentSplitter.documents
receiver: CohereDocumentEmbedder.documents
- sender: CohereDocumentEmbedder.documents
receiver: DocumentWriter.documents

- sender: TextFileToDocument.documents
receiver: DocumentSplitter.documents

max_runs_per_component: 100

metadata: {}

inputs:
files:
- TextFileToDocument.sources

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
api_keySecretSecret.from_env_var(['COHERE_API_KEY', 'CO_API_KEY'])The Cohere API key.
modelstrembed-english-v2.0The name of the model to use. Supported Models are: "embed-english-v3.0", "embed-english-light-v3.0", "embed-multilingual-v3.0", "embed-multilingual-light-v3.0", "embed-english-v2.0", "embed-english-light-v2.0", "embed-multilingual-v2.0". For supported models, see Cohere model documentation.
input_typestrsearch_documentSpecifies the type of input you're giving to the model. Supported values are "search_document", "search_query", "classification" and "clustering". Not required for older versions of the embedding models (meaning any model lower than v3), but is required for more recent versions (meaning any model later than v2).
api_base_urlstrhttps://api.cohere.comThe Cohere API Base url.
truncatestrENDTruncate embeddings that are too long from start or end, ("NONE"|"START"|"END"). Passing "START" discards the start of the input. "END" discards the end of the input. In both cases, input is discarded until the remaining input is exactly the maximum input token length for the model. If "NONE" is selected, when the input exceeds the maximum input token length, an error is returned.
timeoutint120request timeout in seconds.
batch_sizeint32The number of Documents to encode at once.
progress_barboolTrueWhether to show a progress bar or not. Can be helpful to disable in production deployments to keep the logs clean.
meta_fields_to_embedOptional[List[str]]NoneList of meta fields that should be embedded along with the Document text.
embedding_separatorstr\nSeparator used to concatenate the meta fields to the Document text.
embedding_typeOptional[EmbeddingTypes]NoneThe type of embeddings to return. Defaults to float embeddings. Note that int8, uint8, binary, and ubinary are only valid for v3 models.

Run Method Parameters

These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.

ParameterTypeDefaultDescription
documentsList[Document]Documents to embed.