CohereDocumentEmbedder
Calculate document embeddings using Cohere models. Document embedders are used to embed documents in your index.
Basic Information
- Type:
haystack_integrations.components.embedders.cohere.document_embedder.CohereDocumentEmbedder - Components it can connect with:
- Converters and Preprocessors:
CohereDocumentEmbeddercan receive documents to embed from a converter, such asTextFileToDocumentor a preprocessor, such asDocumentSplitter. DocumentWriter:CohereDocumentEmbeddersends embedded documents toDocumentWriterthat writes them into a document store.
- Converters and Preprocessors:
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents to embed. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents with their embeddings added to embedding field. | |
| meta | Dict[str, Any] | Metadata related to the embedding process. |
Overview
CohereDocumentEmbedder uses Cohere models to embed a list of documents. It then adds the computed embeddings to the document's embedding metadata field. For a list of supported models, see the Cohere documentation.
Embedding Models in Query Pipelines and Indexes
The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.
This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.
Authorization
You need a Cohere API key to use this component. Connect deepset to your Cohere account on the Integrations page.
Connection Instructions
- Click your profile icon in the top right corner and choose Integrations.

- Click Connect next to the provider.
- Enter your API key and submit it.
Usage Example
Initializing the Component
components:
CohereDocumentEmbedder:
type: haystack_integrations.components.embedders.cohere.document_embedder.CohereDocumentEmbedder
init_parameters:
Using the Component in an Index
In this index, CohereDocumentEmbedder receives documents from DocumentSplitter and embeds them. It then sends the embedded documents to DocumentWriter that writes them into a document store. The index is configured to use the embed-english-v2.0 model, which means CohereTextEmbedder used in the query pipeline must also use the embed-english-v2.0 model.
components:
DocumentSplitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: word
split_length: 200
split_overlap: 0
split_threshold: 0
splitting_function:
DocumentWriter:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: Standard-Index-English
max_chunk_bytes: 104857600
embedding_dim: 1024
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
similarity: cosine
policy: NONE
CohereDocumentEmbedder:
type: haystack_integrations.components.embedders.cohere.document_embedder.CohereDocumentEmbedder
init_parameters:
api_key:
type: env_var
env_vars:
- COHERE_API_KEY
- CO_API_KEY
strict: false
model: embed-english-v2.0
input_type: search_document
api_base_url: https://api.cohere.com
truncate: END
use_async_client: false
timeout: 120
batch_size: 32
progress_bar: true
meta_fields_to_embed:
embedding_separator: \n
embedding_type:
TextFileToDocument:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
store_full_path: false
connections:
- sender: DocumentSplitter.documents
receiver: CohereDocumentEmbedder.documents
- sender: CohereDocumentEmbedder.documents
receiver: DocumentWriter.documents
- sender: TextFileToDocument.documents
receiver: DocumentSplitter.documents
max_runs_per_component: 100
metadata: {}
inputs:
files:
- TextFileToDocument.sources
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| api_key | Secret | Secret.from_env_var(['COHERE_API_KEY', 'CO_API_KEY']) | The Cohere API key. |
| model | str | embed-english-v2.0 | The name of the model to use. Supported Models are: "embed-english-v3.0", "embed-english-light-v3.0", "embed-multilingual-v3.0", "embed-multilingual-light-v3.0", "embed-english-v2.0", "embed-english-light-v2.0", "embed-multilingual-v2.0". For supported models, see Cohere model documentation. |
| input_type | str | search_document | Specifies the type of input you're giving to the model. Supported values are "search_document", "search_query", "classification" and "clustering". Not required for older versions of the embedding models (meaning any model lower than v3), but is required for more recent versions (meaning any model later than v2). |
| api_base_url | str | https://api.cohere.com | The Cohere API Base url. |
| truncate | str | END | Truncate embeddings that are too long from start or end, ("NONE"|"START"|"END"). Passing "START" discards the start of the input. "END" discards the end of the input. In both cases, input is discarded until the remaining input is exactly the maximum input token length for the model. If "NONE" is selected, when the input exceeds the maximum input token length, an error is returned. |
| timeout | int | 120 | request timeout in seconds. |
| batch_size | int | 32 | The number of Documents to encode at once. |
| progress_bar | bool | True | Whether to show a progress bar or not. Can be helpful to disable in production deployments to keep the logs clean. |
| meta_fields_to_embed | Optional[List[str]] | None | List of meta fields that should be embedded along with the Document text. |
| embedding_separator | str | \n | Separator used to concatenate the meta fields to the Document text. |
| embedding_type | Optional[EmbeddingTypes] | None | The type of embeddings to return. Defaults to float embeddings. Note that int8, uint8, binary, and ubinary are only valid for v3 models. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents to embed. |
Was this page helpful?