AzureOpenAIDocumentEmbedder
Calculate document embeddings using OpenAI models deployed on Azure.
Basic Information
- Type:
haystack.components.preprocessors.document_splitter.DocumentSplitter - Components it can connect with:
- PreProcessors:
AzureOpenAIDocumentEmbeddercan receive the documents to embed from a PreProcessor, likeDocumentSplitter. DocumentWriter:AzureOpenAIDocumentEmbeddercan send the embedded documents toDocumentWriterthat writes them into a document store.
- PreProcessors:
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | A list of documents to embed. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | A list of documents with embeddings. | |
| meta | Dict[str, Any] | Information about the usage of the model, including model name and token usage. |
Overview
You can use AzureOpenAIDocumentEmbedder in your indexes to calculate vector representations (embeddings) of your documents. You need this to perform semantic-based retrieval, where you can search for documents that are similar to the user query. The retriever then compares the documents and query embeddings to find the most relevant documents.
Embedding Models in Query Pipelines and Indexes
The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.
This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.
Authentication
You need an Azure OpenAI API key to use this component. Connect deepset AI Platform to your Azure OpenAI account. For more information, see Using Azure OpenAI Models.
Usage Example
This is a simple index that uses AzureOpenAIDocumentEmbedder to embed the documents and write them into an OpenSearch document store.
components:
...
splitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: word
split_length: 250
split_overlap: 30
document_embedder:
type: haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder
init_parameters:
azure_deployment: "text-embedding-ada-002" # this is the name of the model you want to use
writer:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
embedding_dim: 768
similarity: cosine
policy: OVERWRITE
connections: # Defines how the components are connected
...
- sender: splitter.documents
receiver: document_embedder.documents
- sender: document_embedder.documents
receiver: writer.documents
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| azure_endpoint | Optional[str] | None | The endpoint of the model deployed on Azure. |
| api_version | Optional[str] | 2023-05-15 | The version of the API to use. |
| azure_deployment | str | text-embedding-ada-002 | The name of the model deployed on Azure. The default model is text-embedding-ada-002. |
| dimensions | Optional[int] | None | The number of dimensions of the resulting embeddings. Only supported in text-embedding-3 and later models. |
| api_key | Optional[Secret] | Secret.from_env_var('AZURE_OPENAI_API_KEY', strict=False) | The Azure OpenAI API key. You can set it with an environment variable AZURE_OPENAI_API_KEY, or pass with this parameter during initialization. |
| azure_ad_token | Optional[Secret] | Secret.from_env_var('AZURE_OPENAI_AD_TOKEN', strict=False) | Microsoft Entra ID token, see Microsoft's Entra ID documentation for more information. You can set it with an environment variable AZURE_OPENAI_AD_TOKEN, or pass with this parameter during initialization. Previously called Azure Active Directory. |
| organization | Optional[str] | None | Your organization ID. See OpenAI's Setting Up Your Organization for more information. |
| prefix | str | A string to add at the beginning of each text. | |
| suffix | str | A string to add at the end of each text. | |
| batch_size | int | 32 | Number of documents to embed at once. |
| progress_bar | bool | True | If True, shows a progress bar when running. |
| meta_fields_to_embed | Optional[List[str]] | None | List of metadata fields to embed along with the document text. |
| embedding_separator | str | \n | Separator used to concatenate the metadata fields to the document text. |
| timeout | Optional[float] | None | The timeout for AzureOpenAI client calls, in seconds. If not set, defaults to either the OPENAI_TIMEOUT environment variable, or 30 seconds. |
| max_retries | Optional[int] | None | Maximum number of retries to contact AzureOpenAI after an internal error. If not set, defaults to either the OPENAI_MAX_RETRIES environment variable or to 5 retries. |
| default_headers | Optional[Dict[str, str]] | None | Default headers to send to the AzureOpenAI client. |
| azure_ad_token_provider | Optional[AzureADTokenProvider] | None | A function that returns an Azure Active Directory token, will be invoked on every request. |
| http_client_kwargs | Optional[Dict[str, Any]] | None | A dictionary of keyword arguments to configure a custom httpx.Clientor httpx.AsyncClient. For more information, see the HTTPX documentation. |
| raise_on_failure | bool | False | Whether to raise an exception if the embedding request fails. If False, the component will log the error and continue processing the remaining documents. If True, it will raise an exception on failure. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | A list of documents to embed. |
Was this page helpful?