Skip to main content

AzureOpenAIDocumentEmbedder

Calculate document embeddings using OpenAI models deployed on Azure.

Basic Information

  • Type: haystack.components.preprocessors.document_splitter.DocumentSplitter
  • Components it can connect with:
    • PreProcessors: AzureOpenAIDocumentEmbedder can receive the documents to embed from a PreProcessor, like DocumentSplitter.
    • DocumentWriter: AzureOpenAIDocumentEmbedder can send the embedded documents to DocumentWriter that writes them into a document store.

Inputs

ParameterTypeDefaultDescription
documentsList[Document]A list of documents to embed.

Outputs

ParameterTypeDefaultDescription
documentsList[Document]A list of documents with embeddings.
metaDict[str, Any]Information about the usage of the model, including model name and token usage.

Overview

You can use AzureOpenAIDocumentEmbedder in your indexes to calculate vector representations (embeddings) of your documents. You need this to perform semantic-based retrieval, where you can search for documents that are similar to the user query. The retriever then compares the documents and query embeddings to find the most relevant documents.

Embedding Models in Query Pipelines and Indexes

The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.

This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.

Authentication

You need an Azure OpenAI API key to use this component. Connect deepset AI Platform to your Azure OpenAI account. For more information, see Using Azure OpenAI Models.

Usage Example

This is a simple index that uses AzureOpenAIDocumentEmbedder to embed the documents and write them into an OpenSearch document store.

components:
...
splitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: word
split_length: 250
split_overlap: 30

document_embedder:
type: haystack.components.embedders.azure_document_embedder.AzureOpenAIDocumentEmbedder
init_parameters:
azure_deployment: "text-embedding-ada-002" # this is the name of the model you want to use

writer:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
embedding_dim: 768
similarity: cosine
policy: OVERWRITE

connections: # Defines how the components are connected
...
- sender: splitter.documents
receiver: document_embedder.documents
- sender: document_embedder.documents
receiver: writer.documents

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
azure_endpointOptional[str]NoneThe endpoint of the model deployed on Azure.
api_versionOptional[str]2023-05-15The version of the API to use.
azure_deploymentstrtext-embedding-ada-002The name of the model deployed on Azure. The default model is text-embedding-ada-002.
dimensionsOptional[int]NoneThe number of dimensions of the resulting embeddings. Only supported in text-embedding-3 and later models.
api_keyOptional[Secret]Secret.from_env_var('AZURE_OPENAI_API_KEY', strict=False)The Azure OpenAI API key. You can set it with an environment variable AZURE_OPENAI_API_KEY, or pass with this parameter during initialization.
azure_ad_tokenOptional[Secret]Secret.from_env_var('AZURE_OPENAI_AD_TOKEN', strict=False)Microsoft Entra ID token, see Microsoft's Entra ID documentation for more information. You can set it with an environment variable AZURE_OPENAI_AD_TOKEN, or pass with this parameter during initialization. Previously called Azure Active Directory.
organizationOptional[str]NoneYour organization ID. See OpenAI's Setting Up Your Organization for more information.
prefixstrA string to add at the beginning of each text.
suffixstrA string to add at the end of each text.
batch_sizeint32Number of documents to embed at once.
progress_barboolTrueIf True, shows a progress bar when running.
meta_fields_to_embedOptional[List[str]]NoneList of metadata fields to embed along with the document text.
embedding_separatorstr\nSeparator used to concatenate the metadata fields to the document text.
timeoutOptional[float]NoneThe timeout for AzureOpenAI client calls, in seconds. If not set, defaults to either the OPENAI_TIMEOUT environment variable, or 30 seconds.
max_retriesOptional[int]NoneMaximum number of retries to contact AzureOpenAI after an internal error. If not set, defaults to either the OPENAI_MAX_RETRIES environment variable or to 5 retries.
default_headersOptional[Dict[str, str]]NoneDefault headers to send to the AzureOpenAI client.
azure_ad_token_providerOptional[AzureADTokenProvider]NoneA function that returns an Azure Active Directory token, will be invoked on every request.
http_client_kwargsOptional[Dict[str, Any]]NoneA dictionary of keyword arguments to configure a custom httpx.Clientor httpx.AsyncClient. For more information, see the HTTPX documentation.
raise_on_failureboolFalseWhether to raise an exception if the embedding request fails. If False, the component will log the error and continue processing the remaining documents. If True, it will raise an exception on failure.

Run Method Parameters

These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.

ParameterTypeDefaultDescription
documentsList[Document]A list of documents to embed.