SagemakerGenerator
Generate text using large language models deployed on Amazon Sagemaker.
Basic Information
- Type:
haystack_integrations.components.generators.amazon_sagemaker.sagemaker.SagemakerGenerator - Components it can connect with:
PromptBuilder:SagemakerGeneratorcan receive the prompt for the model fromPromptBuilder.DeepsetAnswerBuilder:SagemakerGeneratorcan send the generated replies toDeepsetAnswerBuilder.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| prompt | str | The prompt with instructions for the model. | |
| generation_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for text generation. These parameters potentially override the parameters passed in pipeline configuration. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| replies | List[str] | A list of strings containing the generated responses. | |
| meta | List[Dict[str, Any]] | A list of dictionaries containing the metadata for each response. |
Overview
With SagemakerGenerator you can use LLMs hosted and deployed on a SageMaker Inference Endpoint.
For guidance on how to deploy a model to SageMaker, see
SageMaker JumpStart foundation models documentation.
You can pass additional text generation parameters for your model using the generation_kwargs parameter. If your model requires custom attributes, pass them as a dictionary in the aws_custom_attributes parameter. For example, Llama2 models must be initiated with `"accept_eula: True".
Authentication
To use this component, connect deepset with Amazon Bedrock first.
Connection Instructions
- Click your profile icon in the top right corner and choose Integrations.

- Click Connect next to the provider.
- Enter your API key and submit it.
For detailed explanation, see Use Amazon Bedrock and SageMaker Models.
Usage Example
Initializing the Component
components:
SagemakerGenerator:
type: haystack_integrations.components.generators.amazon_sagemaker.sagemaker.SagemakerGenerator
init_parameters:
Using the Component in a Pipeline
This is a RAG pipeline that uses SagemakerGenerator with a Llama2 model:
components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
fuzziness: 0
query_embedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2
embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8
meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id
prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |-
You are a technical expert.
You answer questions truthfully based on provided documents.
If the answer exists in several documents, summarize them.
Ignore documents that don't contain the answer to the question.
Only answer based on the documents provided. Don't make things up.
If no information related to the question can be found in the document, say so.
Always use references in the form [NUMBER OF DOCUMENT] when using information from a document, e.g. [3] for Document [3] .
Never name the documents, only enter a number in square brackets as a reference.
The reference must only refer to the number that comes in square brackets after the document.
Otherwise, do not use brackets in your answer and reference ONLY the number of the document without mentioning the word document.
These are the documents:
{%- if documents|length > 0 %}
{%- for document in documents %}
Document [{{ loop.index }}] :
Name of Source File: {{ document.meta.file_name }}
{{ document.content }}
{% endfor -%}
{%- else %}
No relevant documents found.
Respond with "Sorry, no matching documents were found, please adjust the filters or try a different question."
{% endif %}
Question: {{ question }}
Answer:
required_variables: "*"
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
LangfuseConnector:
type: haystack_integrations.components.connectors.langfuse.langfuse_connector.LangfuseConnector
init_parameters:
name: RAG-QA-Claude-3.5-Sonnet-en
public: false
public_key:
type: env_var
env_vars:
- LANGFUSE_PUBLIC_KEY
strict: false
secret_key:
type: env_var
env_vars:
- LANGFUSE_SECRET_KEY
strict: false
httpx_client:
span_handler:
SagemakerGenerator:
type: haystack_integrations.components.generators.amazon_sagemaker.sagemaker.SagemakerGenerator
init_parameters:
model: jumpstart-dft-meta-textgenerationneuron-llama-2-7b
aws_access_key_id:
type: env_var
env_vars:
- AWS_ACCESS_KEY_ID
strict: false
aws_secret_access_key:
type: env_var
env_vars:
- AWS_SECRET_ACCESS_KEY
strict: false
aws_session_token:
type: env_var
env_vars:
- AWS_SESSION_TOKEN
strict: false
aws_region_name:
type: env_var
env_vars:
- AWS_DEFAULT_REGION
strict: false
aws_profile_name:
type: env_var
env_vars:
- AWS_PROFILE
strict: false
aws_custom_attributes:
- accept_eula: true
generation_kwargs:
connections: # Defines how the components are connected
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
receiver: prompt_builder.documents
- sender: meta_field_grouping_ranker.documents
receiver: answer_builder.documents
- sender: prompt_builder.prompt
receiver: answer_builder.prompt
- sender: prompt_builder.prompt
receiver: SagemakerGenerator.prompt
- sender: SagemakerGenerator.replies
receiver: answer_builder.replies
inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "prompt_builder.question"
- "answer_builder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"
outputs: # Defines the output of your pipeline
documents: "meta_field_grouping_ranker.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| aws_access_key_id | Optional[Secret] | Secret.from_env_var(['AWS_ACCESS_KEY_ID'], strict=False) | The Secret for AWS access key ID. |
| aws_secret_access_key | Optional[Secret] | Secret.from_env_var(['AWS_SECRET_ACCESS_KEY'], strict=False) | The Secret for AWS secret access key. |
| aws_session_token | Optional[Secret] | Secret.from_env_var(['AWS_SESSION_TOKEN'], strict=False) | The Secret for AWS session token. |
| aws_region_name | Optional[Secret] | Secret.from_env_var(['AWS_DEFAULT_REGION'], strict=False) | The Secret for AWS region name. If not provided, the default region will be used. |
| aws_profile_name | Optional[Secret] | Secret.from_env_var(['AWS_PROFILE'], strict=False) | The Secret for AWS profile name. If not provided, the default profile will be used. |
| model | str | The name for SageMaker Model Endpoint. | |
| aws_custom_attributes | Optional[Dict[str, Any]] | None | Custom attributes to be passed to SageMaker, for example {"accept_eula": True} in case of Llama-2 models. |
| generation_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for text generation. For a list of supported parameters see your model's documentation page, for example here for HuggingFace models: https://huggingface.co/blog/sagemaker-huggingface-llm#4-run-inference-and-chat-with-our-model Specifically, Llama-2 models support the following inference payload parameters: - max_new_tokens: Model generates text until the output length (excluding the input context length) reaches max_new_tokens. If specified, it must be a positive integer. - temperature: Controls the randomness in the output. Higher temperature results in output sequence with low-probability words and lower temperature results in output sequence with high-probability words. If temperature=0, it results in greedy decoding. If specified, it must be a positive float. - top_p: In each step of text generation, sample from the smallest possible set of words with cumulative probability top_p. If specified, it must be a float between 0 and 1. - return_full_text: If True, input text will be part of the output generated text. If specified, it must be boolean. The default value for it is False. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| prompt | str | The string prompt to use for text generation. | |
| generation_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for text generation. These parameters will potentially override the parameters passed in the __init__ method. |
Was this page helpful?