Skip to main content

JinaDocumentEmbedder

Compute document embeddings using Jina AI models.

Basic Information

  • Type: haystack_integrations.components.embedders.jina.document_embedder.JinaDocumentEmbedder
  • Components it can connect with:
    • Converters: TextFileToDocument, HTMLToDocument, MarkdownToDocument, and other converters that output documents.
    • DocumentSplitter: Splits documents into smaller chunks before embedding.
    • DocumentWriter: Writes embedded documents to a document store.

Inputs

ParameterTypeDefaultDescription
documentsList[Document]A list of Documents to embed.

Outputs

ParameterTypeDefaultDescription
documentsList[Document]A dictionary with following keys: - documents: List of Documents, each with an embedding field containing the computed embedding. - meta: A dictionary with metadata including the model name and usage statistics.
metaDict[str, Any]A dictionary with following keys: - documents: List of Documents, each with an embedding field containing the computed embedding. - meta: A dictionary with metadata including the model name and usage statistics.

Overview

JinaDocumentEmbedder computes embeddings for documents using Jina AI models. It stores the embedding in each document's embedding field, making documents ready for semantic search and retrieval.

Jina embeddings support multiple tasks optimized for different use cases:

  • retrieval.query: Optimized for search queries
  • retrieval.passage: Optimized for document passages
  • text-matching: For semantic similarity comparisons
  • classification: For classification tasks
  • separation: For clustering tasks

Embedding Models in Query Pipelines and Indexes

The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.

This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.

Authorization

Create a secret with your Jina API key. Type JINA_API_KEY as the secret key. For detailed instructions on creating secrets, see Create Secrets.

Get your API key from Jina AI.

Usage Example

This example shows an indexing pipeline that reads text files, splits them into chunks, embeds them using Jina, and writes them to an in-memory document store.

components:
TextFileToDocument:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
store_full_path: false
DocumentSplitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: sentence
split_length: 100
split_overlap: 0
split_threshold: 0
splitting_function:
JinaDocumentEmbedder:
type: haystack_integrations.components.embedders.jina.document_embedder.JinaDocumentEmbedder
init_parameters:
api_key:
type: env_var
env_vars:
- JINA_API_KEY
strict: false
model: jina-embeddings-v3
batch_size: 32
progress_bar: true
task: retrieval.passage
DocumentWriter:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
policy: OVERWRITE
document_store:
type: haystack.document_stores.in_memory.document_store.InMemoryDocumentStore
init_parameters:
bm25_tokenization_regex: (?u)\b\w\w+\b
bm25_algorithm: BM25L
bm25_parameters:
embedding_similarity_function: dot_product
index: 'default'
async_executor:

connections:
- sender: TextFileToDocument.documents
receiver: DocumentSplitter.documents
- sender: DocumentSplitter.documents
receiver: JinaDocumentEmbedder.documents
- sender: JinaDocumentEmbedder.documents
receiver: DocumentWriter.documents

max_runs_per_component: 100

metadata: {}

inputs:
files:
- TextFileToDocument.sources

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
api_keySecretSecret.from_env_var('JINA_API_KEY')The Jina API key.
modelstrjina-embeddings-v3The name of the Jina model to use. Check the list of available models on Jina documentation.
prefixstrA string to add to the beginning of each text.
suffixstrA string to add to the end of each text.
batch_sizeint32Number of Documents to encode at once.
progress_barboolTrueWhether to show a progress bar or not. Can be helpful to disable in production deployments to keep the logs clean.
meta_fields_to_embedOptional[List[str]]NoneList of meta fields that should be embedded along with the Document text.
embedding_separatorstr\nSeparator used to concatenate the meta fields to the Document text.
taskOptional[str]NoneThe downstream task for which the embeddings will be used. The model will return the optimized embeddings for that task. Check the list of available tasks on Jina documentation.
dimensionsOptional[int]NoneNumber of desired dimension. Smaller dimensions are easier to store and retrieve, with minimal performance impact thanks to MRL.
late_chunkingOptional[bool]NoneA boolean to enable or disable late chunking. Apply the late chunking technique to leverage the model's long-context capabilities for generating contextual chunk embeddings. The support of task and late_chunking parameters is only available for jina-embeddings-v3.

Run Method Parameters

These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.

ParameterTypeDefaultDescription
documentsList[Document]A list of Documents to embed.