MongoDBAtlasEmbeddingRetriever
Retrieve documents from the MongoDBAtlasDocumentStore by embedding similarity. This retriever is only compatible with the MongoDBAtlasDocumentStore.
Basic Information
- Type:
haystack_integrations.mongodb_atlas.src.haystack_integrations.components.retrievers.mongodb_atlas.embedding_retriever.MongoDBAtlasEmbeddingRetriever - Components it can connect with:
TextEmbedders:MongoDBAtlasEmbeddingRetrievercan receive the query embedding from a text embedder, such asSentenceTransformersTextEmbedder.Rankers:MongoDBAtlasEmbeddingRetrievercan send the retrieved documents to a Ranker.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| query_embedding | List[float] | Embedding of the query. | |
| filters | Optional[Dict[str, Any]] | None | Filters applied to the retrieved Documents. The way runtime filters are applied depends on the filter_policy configured for the retrieve. For more details, see the Init Parameters section below. |
| top_k | Optional[int] | None | Maximum number of Documents to return. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | List of Documents most similar to the given query_embedding. |
Overview
MongoDBAtlasEmbeddingRetriever retrieves documents from the MongoDBAtlasDocumentStore by comparing the similarity between the query embedding and the document embeddings. It must receive a query embedding from a text embedder, such as SentenceTransformersTextEmbedder.
Usage Example
This is a document search pipeline that uses MongoDBAtlasEmbeddingRetriever to retrieve documents from the MongoDBAtlasDocumentStore by comparing the similarity between the query embedding and the document embeddings. It uses MistralTextEmbedder to embed the query and TransformersSimilarityRanker to rank the documents.
components:
MistralTextEmbedder:
type: haystack_integrations.components.embedders.mistral.text_embedder.MistralTextEmbedder
init_parameters:
api_key:
type: env_var
env_vars:
- MISTRAL_API_KEY
strict: false
model: mistral-embed
MongoDBAtlasEmbeddingRetriever:
type: haystack_integrations.components.retrievers.mongodb_atlas.embedding_retriever.MongoDBAtlasEmbeddingRetriever
init_parameters:
filters:
top_k: 10
filter_policy: replace
document_store:
type: haystack_integrations.document_stores.mongodb_atlas.document_store.MongoDBAtlasDocumentStore
init_parameters:
mongo_connection_string:
type: env_var
env_vars:
- MONGO_CONNECTION_STRING
strict: false
database_name: my-db
collection_name: my-collection
vector_search_index: vector-search
full_text_search_index: full-text-search
embedding_field: embedding
content_field: content
TransformersSimilarityRanker:
type: haystack.components.rankers.transformers_similarity.TransformersSimilarityRanker
init_parameters:
model: cross-encoder/ms-marco-MiniLM-L-6-v2
device:
token:
type: env_var
env_vars:
- HF_API_TOKEN
- HF_TOKEN
strict: false
top_k: 10
query_prefix: ''
document_prefix: ''
meta_fields_to_embed:
embedding_separator: \n
scale_score: true
calibration_factor: 1
score_threshold:
model_kwargs:
tokenizer_kwargs:
batch_size: 16
connections:
- sender: MistralTextEmbedder.embedding
receiver: MongoDBAtlasEmbeddingRetriever.query_embedding
- sender: MongoDBAtlasEmbeddingRetriever.documents
receiver: TransformersSimilarityRanker.documents
max_runs_per_component: 100
metadata: {}
inputs:
query:
- MistralTextEmbedder.text
- TransformersSimilarityRanker.query
outputs:
documents: TransformersSimilarityRanker.documents
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| document_store | MongoDBAtlasDocumentStore | An instance of MongoDBAtlasDocumentStore. | |
| filters | Optional[Dict[str, Any]] | None | Filters applied to the retrieved Documents. Make sure that the fields used in the filters are included in the configuration of the vector_search_index. You must configure them manually in the Web UI of MongoDB Atlas. |
| top_k | int | 10 | Maximum number of Documents to return. |
| filter_policy | Union[str, FilterPolicy] | FilterPolicy.REPLACE | Policy to determine how filters are applied if they're configured for the component but also passed at runtime. Possible values: MERGE and REPLACE. MERGE: If both filter types target the same field, the runtime filter takes precedence. Logical filters are combined unly if they have the same operator (AND, OR). Comparison filters are combined using the default logical operator (defaults to AND). |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| query_embedding | List[float] | Embedding of the query. | |
| filters | Optional[Dict[str, Any]] | None | Filters applied to the retrieved Documents. The way runtime filters are applied depends on the filter_policy configured for the retriever. |
| top_k | Optional[int] | None | Maximum number of Documents to return. Overrides the value specified at initialization. |
Was this page helpful?