JsonSchemaValidator
Validates JSON content of ChatMessage against a specified JSON Schema.
Basic Information
- Type:
haystack_integrations.validators.json_schema.JsonSchemaValidator
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage instances to be validated. The last message in this list is the one that is validated. | |
| json_schema | Optional[Dict[str, Any]] | None | A dictionary representing the JSON schema against which the messages' content is validated. If not provided, the schema from the component init is used. |
| error_template | Optional[str] | None | A custom template string for formatting the error message in case of validation. If not provided, the error_template from the component init is used. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| validated | List[ChatMessage] | A dictionary with the following keys: - "validated": A list of messages if the last message is valid. - "validation_error": A list of messages if the last message is invalid. | |
| validation_error | List[ChatMessage] | A dictionary with the following keys: - "validated": A list of messages if the last message is valid. - "validation_error": A list of messages if the last message is invalid. |
Overview
Bear with us while we're working on adding pipeline examples and most common components connections.
Validates JSON content of ChatMessage against a specified JSON Schema.
If JSON content of a message conforms to the provided schema, the message is passed along the "validated" output.
If the JSON content does not conform to the schema, the message is passed along the "validation_error" output.
In the latter case, the error message is constructed using the provided error_template or a default template.
These error ChatMessages can be used by LLMs in Haystack 2.x recovery loops.
Usage example:
from typing import List
from haystack import Pipeline
from haystack.components.generators.chat import OpenAIChatGenerator
from haystack.components.joiners import BranchJoiner
from haystack.components.validators import JsonSchemaValidator
from haystack import component
from haystack.dataclasses import ChatMessage
@component
class MessageProducer:
@component.output_types(messages=List[ChatMessage])
def run(self, messages: List[ChatMessage]) -> dict:
return {"messages": messages}
p = Pipeline()
p.add_component("llm", OpenAIChatGenerator(model="gpt-4-1106-preview",
generation_kwargs={"response_format": {"type": "json_object"}}))
p.add_component("schema_validator", JsonSchemaValidator())
p.add_component("joiner_for_llm", BranchJoiner(List[ChatMessage]))
p.add_component("message_producer", MessageProducer())
p.connect("message_producer.messages", "joiner_for_llm")
p.connect("joiner_for_llm", "llm")
p.connect("llm.replies", "schema_validator.messages")
p.connect("schema_validator.validation_error", "joiner_for_llm")
result = p.run(data={
"message_producer": {
"messages":[ChatMessage.from_user("Generate JSON for person with name 'John' and age 30")]},
"schema_validator": {
"json_schema": {
"type": "object",
"properties": {"name": {"type": "string"},
"age": {"type": "integer"}
}
}
}
})
print(result)
>> {'schema_validator': {'validated': [ChatMessage(_role=<ChatRole.ASSISTANT: 'assistant'>,
_content=[TextContent(text="\n{\n "name": "John",\n "age": 30\n}")],
_name=None, _meta={'model': 'gpt-4-1106-preview', 'index': 0,
'finish_reason': 'stop', 'usage': {'completion_tokens': 17, 'prompt_tokens': 20, 'total_tokens': 37}})]}}
Usage Example
components:
JsonSchemaValidator:
type: components.validators.json_schema.JsonSchemaValidator
init_parameters:
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| json_schema | Optional[Dict[str, Any]] | None | A dictionary representing the JSON schema against which the messages' content is validated. |
| error_template | Optional[str] | None | A custom template string for formatting the error message in case of validation failure. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage instances to be validated. The last message in this list is the one that is validated. | |
| json_schema | Optional[Dict[str, Any]] | None | A dictionary representing the JSON schema against which the messages' content is validated. If not provided, the schema from the component init is used. |
| error_template | Optional[str] | None | A custom template string for formatting the error message in case of validation. If not provided, the error_template from the component init is used. |
Was this page helpful?