AnthropicChatGenerator
Use Anthropic's chat completion models.
Basic Information
- Type:
haystack_integrations.components.generators.anthropic.chat.chat_generator.AnthropicChatGenerator - Components it can connect with:
ChatPromptBuilder:AnthropicChatGeneratorreceives chat messages fromChatPromptBuilder.OutputAdapter:AnthropicChatGeneratorcan send generated replies toOutputAdapterconfigured to convert them into a list of strings thatDeepsetAnswerBuildercan accept.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage objects representing the input messages. | |
| generation_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for the model. |
| streaming_callback | Optional[StreamingCallbackT] | None | An optional callback function to handle streaming chunks. |
| tools | Optional[Union[List[Tool], Toolset]] | None | A list of tool objects or a toolset that the model can use. Each tool must have a unique name. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| replies | List[ChatMessage] | A list of generated replies. |
Overview
For a list of Anthropic models you can use, see Anthropic Models.
You can customize how the text is generated by passing parameters to the Anthropic API. Use the generation_kwargs parameter to do this. Any parameter that works with anthropic.Message.create also works here. For a complete list of parameters, see Anthropic API documentation.
Authentication
To use this component, connect Haystack Platform with Anthropic first. You'll need an Anthropic API key to do this.
For details on using Anthropic models, see Use Anthropic Models.
Usage Example
Using the Component in a Pipeline
This is a RAG pipeline that uses Claude Sonnet 4:
components:
bm25_retriever:
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- ${OPENSEARCH_USER}
- ${OPENSEARCH_PASSWORD}
use_ssl: true
verify_certs: false
top_k: 20
query_embedder:
type: haystack.components.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
init_parameters:
model: intfloat/e5-base-v2
embedding_retriever:
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- ${OPENSEARCH_USER}
- ${OPENSEARCH_PASSWORD}
use_ssl: true
verify_certs: false
top_k: 20
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: haystack.components.rankers.transformers_similarity.TransformersSimilarityRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8
chat_prompt_builder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- _content:
- text: |
You are a helpful assistant answering questions based on the provided documents.
If the documents don't contain the answer, say so.
Do not use your own knowledge.
_role: system
- _content:
- text: |
Documents:
{% for document in documents %}
Document [{{ loop.index }}]:
{{ document.content }}
{% endfor %}
Question: {{ query }}
_role: user
anthropic_chat_generator:
type: haystack_integrations.components.generators.anthropic.chat.chat_generator.AnthropicChatGenerator
init_parameters:
model: claude-sonnet-4-20250514
generation_kwargs:
temperature: 0.7
max_tokens: 500
output_adapter:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: List[str]
answer_builder:
type: haystack.components.builders.answer_builder.AnswerBuilder
init_parameters: {}
connections:
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: chat_prompt_builder.documents
- sender: ranker.documents
receiver: answer_builder.documents
- sender: chat_prompt_builder.prompt
receiver: anthropic_chat_generator.messages
- sender: anthropic_chat_generator.replies
receiver: output_adapter.replies
- sender: output_adapter.output
receiver: answer_builder.replies
max_runs_per_component: 100
inputs:
query:
- bm25_retriever.query
- query_embedder.text
- ranker.query
- chat_prompt_builder.query
- answer_builder.query
filters:
- bm25_retriever.filters
- embedding_retriever.filters
outputs:
documents: ranker.documents
answers: answer_builder.answers
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| api_key | Secret | Secret.from_env_var('ANTHROPIC_API_KEY') | The Anthropic API key. |
| model | str | claude-sonnet-4-20250514 | The name of the Anthropic model to use. |
| streaming_callback | Optional[Callable[[StreamingChunk], None]] | None | An optional callback function to handle streaming chunks. |
| system_prompt | Optional[str] | None | An optional system prompt to use for generation. |
| generation_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for generation. |
| timeout | Optional[float] | None | The timeout for request. |
| max_retries | Optional[int] | None | The maximum number of retries if a request fails. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage objects representing the input messages. | |
| generation_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for generation. For a complete list, see Anthropic API documentation. |
| streaming_callback | Optional[Callable[[StreamingChunk], None]] | None | An optional callback function to handle streaming chunks. |
| tools | Optional[Union[List[Tool], Toolset]] | None | A list of tool objects or a toolset that the model can use. Each tool must have a unique name. |
Was this page helpful?