VertexAITextGenerator
Generate text using Google Vertex AI generative models.
Basic Information
- Type:
haystack_integrations.components.generators.google_vertex.text_generator.VertexAITextGenerator - Components it can connect with:
PromptBuilder: Receives a prompt fromPromptBuilder.AnswerBuilder: Sends generated replies toAnswerBuilder.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| prompt | str | The prompt to use for text generation. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| replies | List[str] | A list of generated replies. | |
| safety_attributes | Dict[str, float] | Safety scores for each answer. | |
| citations | List[Dict[str, Any]] | Citations for each answer. |
Overview
VertexAITextGenerator generates text using Google Vertex AI generative models. It supports text-bison, text-unicorn, and text-bison-32k models.
Authorization
This component authenticates using Google Cloud Application Default Credentials (ADCs). For more information, see the official Google documentation.
Create secrets for GCP_PROJECT_ID and optionally GCP_DEFAULT_REGION. For detailed instructions on creating secrets, see Create Secrets.
Usage Example
This query pipeline uses VertexAITextGenerator to generate text responses:
components:
bm25_retriever:
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'default'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 10
fuzziness: 0
PromptBuilder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |
Given the following information, answer the question.
Context:
{% for document in documents %}
{{ document.content }}
{% endfor %}
Question: {{ query }}
required_variables:
variables:
VertexAITextGenerator:
type: haystack_integrations.components.generators.google_vertex.text_generator.VertexAITextGenerator
init_parameters:
project_id:
model: text-bison
location:
AnswerBuilder:
type: haystack.components.builders.answer_builder.AnswerBuilder
init_parameters:
pattern:
reference_pattern:
connections:
- sender: bm25_retriever.documents
receiver: PromptBuilder.documents
- sender: PromptBuilder.prompt
receiver: VertexAITextGenerator.prompt
- sender: VertexAITextGenerator.replies
receiver: AnswerBuilder.replies
- sender: bm25_retriever.documents
receiver: AnswerBuilder.documents
inputs:
query:
- bm25_retriever.query
- PromptBuilder.query
- AnswerBuilder.query
outputs:
answers: AnswerBuilder.answers
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| project_id | Optional[str] | None | ID of the GCP project to use. By default, it is set during Google Cloud authentication. |
| model | str | text-bison | Name of the model to use. |
| location | Optional[str] | None | The default location to use when making API calls. If not set, uses us-central-1. |
| kwargs | Any | Additional keyword arguments to pass to the model. See the TextGenerationModel.predict() documentation. |
Run Method Parameters
These are the parameters you can configure for the run() method. You can pass these parameters at query time through the API, in Playground, or when running a job.
| Parameter | Type | Default | Description |
|---|---|---|---|
| prompt | str | The prompt to use for text generation. |
Was this page helpful?