Skip to main content

NamedEntityExtractor

Annotate named entities in documents and store them as the document's metadata.

Basic Information

  • Type: haystack.components.extractors.named_entity_extractor.NamedEntityExtractor
  • Components it can connect with:
    • Converters: NamedEntityExtractor can receive documents from converters in an index.
    • DocumentSplitter: NamedEntityExtractor can receive split documents from DocumentSplitter or send annotated documents to it.
    • DocumentWriter: NamedEntityExtractor can send annotated documents to DocumentWriter.

Inputs

ParameterTypeDefaultDescription
documentsList[Document]Documents to process.
batch_sizeint1Batch size used for processing the documents.

Outputs

ParameterTypeDefaultDescription
documentsList[Document]Processed documents with named entity annotations stored in metadata.

Overview

NamedEntityExtractor extracts predefined named entities out of a piece of text. . It identifies entities such as people, organizations, locations, and other named items in the document text.

The component automatically recognizes and groups them depending on their class, such as people's names, organizations, locations, and other types. The exact classes are determined by the model that you use the component with.

The component supports two backends:

  • Hugging Face: Use any sequence classification model from the Hugging Face model hub. For example, dslim/bert-base-NER is a popular choice for general NER tasks.
  • spaCy: Use any spaCy model that contains an NER component.

Annotations are stored as metadata in the documents.

Usage Example

Using the component in a pipeline

This index uses NamedEntityExtractor to annotate named entities in documents before storing them:

components:
TextFileToDocument:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8

DocumentSplitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: sentence
split_length: 5
split_overlap: 1

NamedEntityExtractor:
type: haystack.components.extractors.named_entity_extractor.NamedEntityExtractor
init_parameters:
backend: hugging_face
model: dslim/bert-base-NER
pipeline_kwargs:
device:
token:
type: env_var
env_vars:
- HF_API_TOKEN
- HF_TOKEN
strict: false

document_embedder:
type: haystack.components.embedders.sentence_transformers_document_embedder.SentenceTransformersDocumentEmbedder
init_parameters:
model: sentence-transformers/all-mpnet-base-v2

DocumentWriter:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- ${OPENSEARCH_USER}
- ${OPENSEARCH_PASSWORD}
use_ssl: true
verify_certs: false
policy: OVERWRITE

connections:
- sender: TextFileToDocument.documents
receiver: DocumentSplitter.documents
- sender: DocumentSplitter.documents
receiver: NamedEntityExtractor.documents
- sender: NamedEntityExtractor.documents
receiver: document_embedder.documents
- sender: document_embedder.documents
receiver: DocumentWriter.documents

inputs:
files:
- TextFileToDocument.sources

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
backendUnion[str, NamedEntityExtractorBackend]Backend to use for NER. Options: hugging_face or spacy.
modelstrName of the model or a path to the model on the local disk. For Hugging Face, use model IDs like dslim/bert-base-NER. For spaCy, use model names like en_core_web_sm.
pipeline_kwargsOptional[Dict[str, Any]]NoneKeyword arguments passed to the pipeline. The pipeline can override these arguments. Dependent on the backend.
deviceOptional[ComponentDevice]NoneThe device on which the model is loaded. If None, the default device is automatically selected. If a device or device map is specified in pipeline_kwargs, it overrides this parameter (only applicable to the Hugging Face backend).
tokenOptional[Secret]Secret.from_env_var(['HF_API_TOKEN', 'HF_TOKEN'], strict=False)The API token to download private models from Hugging Face.

Run Method Parameters

These are the parameters you can configure for the run() method. You can pass these parameters at query time through the API, in Playground, or when running a job.

ParameterTypeDefaultDescription
documentsList[Document]Documents to process.
batch_sizeint1Batch size used for processing the documents.