CohereGenerator
Generate text using Cohere's models through the Cohere generate endpoint.
Basic Information
- Type:
haystack_integrations.components.generators.cohere.generator.CohereGenerator - Components it can connect with:
PromptBuilder:CohereGeneratorreceives a prompt fromPromptBuilder.DeepsetAnswerBuilder:CohereGeneratorsends the generated replies toDeepsetAnswerBuilder.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| prompt | str | The prompt with instructions for the model. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| replies | List[str] | A list of replies generated by the model. | |
| meta | List[Dict[str, Any]] | Information about the request. |
Overview
generate APICohere discontinued the generate API, so this generator is a wrapper around CohereChatGenerator provided for backward compatibility.
For a list of supported models, see the Cohere documentation.
You can configure how the model generates text by passing additional arguments to the model. For more information, see the Cohere documentation.
Authorization
You need a Cohere API key to use this component. Connect deepset to your Cohere account on the Integrations page.
Connection Instructions
- Click your profile icon in the top right corner and choose Integrations.

- Click Connect next to the provider.
- Enter your API key and submit it.
Usage Example
components:
CohereGenerator:
type: cohere.src.haystack_integrations.components.generators.cohere.generator.CohereGenerator
init_parameters:
Using the Component in a Pipeline
This pipeline uses CohereGenerator to generate replies to a question. It uses DeepsetAnswerBuilder to build the answers with references. It's also optimized for uploading files when testing it in Playground.
components:
retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.open_search_hybrid_retriever.OpenSearchHybridRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: ''
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
fuzziness: 0
embedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2
ranker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8
meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id
prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
required_variables: "*"
template: |-
You are a technical expert.
You answer questions truthfully based on provided documents.
If the answer exists in several documents, summarize them.
Ignore documents that don't contain the answer to the question.
Only answer based on the documents provided. Don't make things up.
If no information related to the question can be found in the document, say so.
Always use references in the form [NUMBER OF DOCUMENT] when using information from a document, e.g. [3] for Document [3] .
Never name the documents, only enter a number in square brackets as a reference.
The reference must only refer to the number that comes in square brackets after the document.
Otherwise, do not use brackets in your answer and reference ONLY the number of the document without mentioning the word document.
These are the documents:
{%- if documents|length > 0 %}
{%- for document in documents %}
Document [{{ loop.index }}] :
Name of Source File: {{ document.meta.file_name }}
{{ document.content }}
{% endfor -%}
{%- else %}
No relevant documents found.
Respond with "Sorry, no matching documents were found, please adjust the filters or try a different question."
{% endif %}
Question: {{ question }}
Answer:
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
file_downloader:
type: deepset_cloud_custom_nodes.augmenters.deepset_file_downloader.DeepsetFileDownloader
init_parameters:
file_extensions:
- .txt
- .pdf
- .md
- .docx
- .csv
- .xlsx
- .html
- .htm
- .pptx
sources_target_type: haystack.dataclasses.ByteStream
attachments_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
weights:
top_k:
sort_by_score: true
multi_file_converter:
type: haystack.core.super_component.super_component.SuperComponent
init_parameters:
input_mapping:
sources:
- file_classifier.sources
is_pipeline_async: false
output_mapping:
score_adder.output: documents
pipeline:
components:
file_classifier:
type: haystack.components.routers.file_type_router.FileTypeRouter
init_parameters:
mime_types:
- text/plain
- application/pdf
- text/markdown
- text/html
- application/vnd.openxmlformats-officedocument.wordprocessingml.document
- application/vnd.openxmlformats-officedocument.presentationml.presentation
- application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
- text/csv
text_converter:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
pdf_converter:
type: haystack.components.converters.pdfminer.PDFMinerToDocument
init_parameters:
line_overlap: 0.5
char_margin: 2
line_margin: 0.5
word_margin: 0.1
boxes_flow: 0.5
detect_vertical: true
all_texts: false
store_full_path: false
markdown_converter:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
html_converter:
type: haystack.components.converters.html.HTMLToDocument
init_parameters:
# A dictionary of keyword arguments to customize how you want to extract content from your HTML files.
# For the full list of available arguments, see
# the [Trafilatura documentation](https://trafilatura.readthedocs.io/en/latest/corefunctions.html#extract).
extraction_kwargs:
output_format: markdown # Extract text from HTML. You can also also choose "txt"
target_language: # You can define a language (using the ISO 639-1 format) to discard documents that don't match that language.
include_tables: true # If true, includes tables in the output
include_links: true # If true, keeps links along with their targets
docx_converter:
type: haystack.components.converters.docx.DOCXToDocument
init_parameters:
link_format: markdown
pptx_converter:
type: haystack.components.converters.pptx.PPTXToDocument
init_parameters: {}
xlsx_converter:
type: haystack.components.converters.xlsx.XLSXToDocument
init_parameters: {}
csv_converter:
type: haystack.components.converters.csv.CSVToDocument
init_parameters:
encoding: utf-8
splitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: word
split_length: 250
split_overlap: 30
respect_sentence_boundary: true
language: en
score_adder:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: |
{%- set scored_documents = [] -%}
{%- for document in documents -%}
{%- set doc_dict = document.to_dict() -%}
{%- set _ = doc_dict.update({'score': 100.0}) -%}
{%- set scored_doc = document.from_dict(doc_dict) -%}
{%- set _ = scored_documents.append(scored_doc) -%}
{%- endfor -%}
{{ scored_documents }}
output_type: List[haystack.Document]
custom_filters:
unsafe: true
text_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
sort_by_score: false
tabular_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
sort_by_score: false
connections:
- sender: file_classifier.text/plain
receiver: text_converter.sources
- sender: file_classifier.application/pdf
receiver: pdf_converter.sources
- sender: file_classifier.text/markdown
receiver: markdown_converter.sources
- sender: file_classifier.text/html
receiver: html_converter.sources
- sender: file_classifier.application/vnd.openxmlformats-officedocument.wordprocessingml.document
receiver: docx_converter.sources
- sender: file_classifier.application/vnd.openxmlformats-officedocument.presentationml.presentation
receiver: pptx_converter.sources
- sender: file_classifier.application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
receiver: xlsx_converter.sources
- sender: file_classifier.text/csv
receiver: csv_converter.sources
- sender: text_joiner.documents
receiver: splitter.documents
- sender: text_converter.documents
receiver: text_joiner.documents
- sender: pdf_converter.documents
receiver: text_joiner.documents
- sender: markdown_converter.documents
receiver: text_joiner.documents
- sender: html_converter.documents
receiver: text_joiner.documents
- sender: pptx_converter.documents
receiver: text_joiner.documents
- sender: docx_converter.documents
receiver: text_joiner.documents
- sender: xlsx_converter.documents
receiver: tabular_joiner.documents
- sender: csv_converter.documents
receiver: tabular_joiner.documents
- sender: splitter.documents
receiver: tabular_joiner.documents
- sender: tabular_joiner.documents
receiver: score_adder.documents
CohereGenerator:
type: haystack_integrations.components.generators.cohere.generator.CohereGenerator
init_parameters:
api_key:
type: env_var
env_vars:
- COHERE_API_KEY
- CO_API_KEY
strict: false
model: command-r
streaming_callback:
api_base_url:
connections: # Defines how the components are connected
- sender: retriever.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: prompt_builder.prompt
receiver: answer_builder.prompt
- sender: file_downloader.sources
receiver: multi_file_converter.sources
- sender: multi_file_converter.documents
receiver: attachments_joiner.documents
- sender: meta_field_grouping_ranker.documents
receiver: attachments_joiner.documents
- sender: attachments_joiner.documents
receiver: answer_builder.documents
- sender: attachments_joiner.documents
receiver: prompt_builder.documents
- sender: prompt_builder.prompt
receiver: CohereGenerator.prompt
- sender: CohereGenerator.replies
receiver: answer_builder.replies
inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "retriever.query"
- "ranker.query"
- "prompt_builder.question"
- "answer_builder.query"
filters: # These components will receive a potential query filter as input
- "retriever.filters_bm25"
- "retriever.filters_embedding"
files:
- file_downloader.sources
outputs: # Defines the output of your pipeline
documents: "attachments_joiner.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| api_key | Secret | Secret.from_env_var(['COHERE_API_KEY', 'CO_API_KEY']) | Cohere API key. |
| model | str | command-r | Cohere model to use for generation. |
| streaming_callback | Optional[Callable] | None | Callback function that is called when a new token is received from the stream. For more information, see Enable Streaming. |
| api_base_url | Optional[str] | None | Cohere base URL. |
| **kwargs | Any | Additional arguments passed to the model. These arguments are specific to the model. You can check them in model's documentation. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| prompt | str | The prompe with instructions for the model. |
Was this page helpful?