DOCXToDocument
Convert DOCX files to documents your pipeline can query.
Basic Information
- Type:
haystack.components.converters.docx.DOCXToDocument - Components it can connect with:
FileTypeRouter:DOCXToDocumentcan receive DOCX files fromFileTypeRouter.DocumentJoiner:DOCXToDocumentcan send converted documents toDocumentJoiner. This is useful if you have other converters in your pipeline and want to join their output withDOCXToDocument's output before sending it further down the pipeline.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| sources | List[Union[str, Path, ByteStream]] | List of file paths or ByteStream objects. | |
| meta | Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] | None | Optional metadata to attach to the converted documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced Documents. If it's a list, the length of the list must match the number of sources, because the two lists will be zipped. If sources contains ByteStream objects, their meta will be added to the output Documents. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Created documents. |
Overview
DOCXToDocument uses python-docx library to convert DOCX files to documents. This component doesn't preserve page breaks in the original document.
You can use the table_format parameter to specify the format for table output and use this component to extract tables from your DOCX files.
Usage Example
Initializing the Component
components:
DOCXToDocument:
type: haystack.components.converters.docx.DOCXToDocument
init_parameters:
Using the Component in an Index
In this index, DOCXToDocument receives DOCX files from FileTypeRouter and sends them to DocumentJoiner.
components:
file_classifier:
type: haystack.components.routers.file_type_router.FileTypeRouter
init_parameters:
mime_types:
- text/plain
- application/pdf
- text/markdown
- application/vnd.openxmlformats-officedocument.wordprocessingml.document
text_converter:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
pdf_converter:
type: haystack.components.converters.pdfminer.PDFMinerToDocument
init_parameters:
line_overlap: 0.5
char_margin: 2
line_margin: 0.5
word_margin: 0.1
boxes_flow: 0.5
detect_vertical: true
all_texts: false
store_full_path: false
markdown_converter:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
docx_converter:
type: haystack.components.converters.docx.DOCXToDocument
init_parameters:
link_format: markdown
joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
sort_by_score: false
splitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: word
split_length: 250
split_overlap: 30
respect_sentence_boundary: true
language: en
document_embedder:
type: haystack.components.embedders.sentence_transformers_document_embedder.SentenceTransformersDocumentEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2
writer:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: ''
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
policy: OVERWRITE
connections: # Defines how the components are connected
- sender: file_classifier.text/plain
receiver: text_converter.sources
- sender: file_classifier.application/pdf
receiver: pdf_converter.sources
- sender: file_classifier.text/markdown
receiver: markdown_converter.sources
- sender: file_classifier.application/vnd.openxmlformats-officedocument.wordprocessingml.document
receiver: docx_converter.sources
- sender: text_converter.documents
receiver: joiner.documents
- sender: pdf_converter.documents
receiver: joiner.documents
- sender: markdown_converter.documents
receiver: joiner.documents
- sender: docx_converter.documents
receiver: joiner.documents
- sender: joiner.documents
receiver: splitter.documents
- sender: document_embedder.documents
receiver: writer.documents
- sender: splitter.documents
receiver: document_embedder.documents
inputs: # Define the inputs for your pipeline
files: # This component will receive the files to index as input
- file_classifier.sources
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| table_format | Union[str, DOCXTableFormat] | DOCXTableFormat.CSV | The format for table output. Can be either DOCXTableFormat.MARKDOWN, DOCXTableFormat.CSV, "markdown", or "csv". |
| link_format | Union[str, DOCXLinkFormat] | DOCXLinkFormat.NONE | The format for link output. Can be either: DOCXLinkFormat.MARKDOWN or "markdown" to get text, DOCXLinkFormat.PLAIN or "plain" to get text (https://www.iana.org/assignments/media-types/application/vnd.openxmlformats-officedocument.wordprocessingml.document), DOCXLinkFormat.NONE or "none" to get text without links. |
| store_full_path | bool | False | If True, the full file path is stored in the metadata of the document. If False, only the file name is stored. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| sources | List[Union[str, Path, ByteStream]] | List of file paths or ByteStream objects. | |
| meta | Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] | None | Optional metadata to attach to the Documents. This value can be either a list of dictionaries or a single dictionary. If it's a single dictionary, its content is added to the metadata of all produced Documents. If it's a list, the length of the list must match the number of sources, because the two lists are zipped. If sources contains ByteStream objects, their meta is added to the output Documents. |
Was this page helpful?