GoogleGenAITextEmbedder
Embed strings using Google AI models.
Basic Information
- Type:
haystack_integrations.components.embedders.google_genai.text_embedder.GoogleGenAITextEmbedder - Components it can connect with:
Input: Receives a query string as input in a query pipeline.- Retrievers: Sends the computed embedding to an embedding Retriever.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| text | str | Text to embed. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| embedding | List[float] | The embedding of the input text. | |
| meta | Dict[str, Any] | Information about the usage of the model. |
Overview
GoogleGenAITextEmbedder embeds strings using Google AI models. It supports both the Gemini Developer API and Vertex AI.
Use this component in query pipelines to embed the user's query before passing it to a retriever for semantic search. Make sure to use the same embedding model as the one used to embed the documents in the document store.
Compatible Models
You can find the supported models in the Google AI documentation.
Embedding Models in Query Pipelines and Indexes
The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.
This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.
Authorization
Gemini Developer API: Create a secret with your Google API key. Type GOOGLE_API_KEY or GEMINI_API_KEY as the secret key. Get your API key from Google AI Studio.
Vertex AI: Create secrets for GCP_PROJECT_ID and GCP_DEFAULT_REGION, or use Application Default Credentials.
For detailed instructions on creating secrets, see Create Secrets.
Usage Example
This query pipeline uses GoogleGenAITextEmbedder to embed queries for semantic search:
components:
GoogleGenAITextEmbedder:
type: haystack_integrations.components.embedders.google_genai.text_embedder.GoogleGenAITextEmbedder
init_parameters:
api_key:
type: env_var
env_vars:
- GOOGLE_API_KEY
- GEMINI_API_KEY
strict: false
api: gemini
vertex_ai_project:
vertex_ai_location:
model: text-embedding-004
prefix: ""
suffix: ""
config:
embedding_retriever:
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'google-embeddings'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 10
ChatPromptBuilder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- role: system
content: "You are a helpful assistant answering questions based on the provided documents."
- role: user
content: "Documents:\n{% for doc in documents %}\n{{ doc.content }}\n{% endfor %}\n\nQuestion: {{ query }}"
OpenAIChatGenerator:
type: haystack.components.generators.chat.openai.OpenAIChatGenerator
init_parameters:
api_key:
type: env_var
env_vars:
- OPENAI_API_KEY
strict: false
model: gpt-4o-mini
OutputAdapter:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: List[str]
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
connections:
- sender: GoogleGenAITextEmbedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: ChatPromptBuilder.documents
- sender: ChatPromptBuilder.prompt
receiver: OpenAIChatGenerator.messages
- sender: OpenAIChatGenerator.replies
receiver: OutputAdapter.replies
- sender: OutputAdapter.output
receiver: answer_builder.replies
- sender: embedding_retriever.documents
receiver: answer_builder.documents
inputs:
query:
- GoogleGenAITextEmbedder.text
- ChatPromptBuilder.query
- answer_builder.query
filters:
- embedding_retriever.filters
outputs:
documents: embedding_retriever.documents
answers: answer_builder.answers
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| api_key | Secret | Secret.from_env_var(['GOOGLE_API_KEY', 'GEMINI_API_KEY'], strict=False) | Google API key. Not needed if using Vertex AI with Application Default Credentials. |
| api | Literal['gemini', 'vertex'] | gemini | Which API to use. Either "gemini" for the Gemini Developer API or "vertex" for Vertex AI. |
| vertex_ai_project | Optional[str] | None | Google Cloud project ID for Vertex AI. Required when using Vertex AI with Application Default Credentials. |
| vertex_ai_location | Optional[str] | None | Google Cloud location for Vertex AI (for example, "us-central1", "europe-west1"). Required when using Vertex AI with Application Default Credentials. |
| model | str | text-embedding-004 | The name of the model to use for calculating embeddings. |
| prefix | str | "" | A string to add at the beginning of each text to embed. |
| suffix | str | "" | A string to add at the end of each text to embed. |
| config | Optional[Dict[str, Any]] | None | A dictionary to configure embedding content configuration. Defaults to {"task_type": "SEMANTIC_SIMILARITY"}. See Google AI Task types. |
Run Method Parameters
These are the parameters you can configure for the run() method. You can pass these parameters at query time through the API, in Playground, or when running a job.
| Parameter | Type | Default | Description |
|---|---|---|---|
| text | str | Text to embed. |
Was this page helpful?