QdrantHybridRetriever
A component for retrieving documents from an QdrantDocumentStore using both dense and sparse vectors
Basic Information
- Type:
haystack_integrations.components.retrievers.qdrant.retriever.QdrantHybridRetriever
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| query_embedding | List[float] | Dense embedding of the query. | |
| query_sparse_embedding | SparseEmbedding | Sparse embedding of the query. | |
| filters | Optional[Union[Dict[str, Any], models.Filter]] | None | Filters applied to the retrieved Documents. The way runtime filters are applied depends on the filter_policy chosen at retriever initialization. See init method docstring for more details. |
| top_k | Optional[int] | None | The maximum number of documents to return. If using group_by parameters, maximum number of groups to return. |
| return_embedding | Optional[bool] | None | Whether to return the embedding of the retrieved Documents. |
| score_threshold | Optional[float] | None | A minimal score threshold for the result. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. |
| group_by | Optional[str] | None | Payload field to group by, must be a string or number field. If the field contains more than 1 value, all values will be used for grouping. One point can be in multiple groups. |
| group_size | Optional[int] | None | Maximum amount of points to return per group. Default is 3. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | The retrieved documents. |
Overview
Work in Progress
Bear with us while we're working on adding pipeline examples and most common components connections.
A component for retrieving documents from an QdrantDocumentStore using both dense and sparse vectors and fusing the results using Reciprocal Rank Fusion.
Usage example:
from haystack_integrations.components.retrievers.qdrant import QdrantHybridRetriever
from haystack_integrations.document_stores.qdrant import QdrantDocumentStore
from haystack.dataclasses import Document, SparseEmbedding
document_store = QdrantDocumentStore(
":memory:",
use_sparse_embeddings=True,
recreate_index=True,
return_embedding=True,
wait_result_from_api=True,
)
doc = Document(content="test",
embedding=[0.5]*768,
sparse_embedding=SparseEmbedding(indices=[0, 3, 5], values=[0.1, 0.5, 0.12]))
document_store.write_documents([doc])
retriever = QdrantHybridRetriever(document_store=document_store)
embedding = [0.1]*768
sparse_embedding = SparseEmbedding(indices=[0, 1, 2, 3], values=[0.1, 0.8, 0.05, 0.33])
retriever.run(query_embedding=embedding, query_sparse_embedding=sparse_embedding)
Usage Example
components:
QdrantHybridRetriever:
type: qdrant.src.haystack_integrations.components.retrievers.qdrant.retriever.QdrantHybridRetriever
init_parameters:
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| document_store | QdrantDocumentStore | An instance of QdrantDocumentStore. | |
| filters | Optional[Union[Dict[str, Any], models.Filter]] | None | A dictionary with filters to narrow down the search space. |
| top_k | int | 10 | The maximum number of documents to retrieve. If using group_by parameters, maximum number of groups to return. |
| return_embedding | bool | False | Whether to return the embeddings of the retrieved Documents. |
| filter_policy | Union[str, FilterPolicy] | FilterPolicy.REPLACE | Policy to determine how filters are applied. |
| score_threshold | Optional[float] | None | A minimal score threshold for the result. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. |
| group_by | Optional[str] | None | Payload field to group by, must be a string or number field. If the field contains more than 1 value, all values will be used for grouping. One point can be in multiple groups. |
| group_size | Optional[int] | None | Maximum amount of points to return per group. Default is 3. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| query_embedding | List[float] | Dense embedding of the query. | |
| query_sparse_embedding | SparseEmbedding | Sparse embedding of the query. | |
| filters | Optional[Union[Dict[str, Any], models.Filter]] | None | Filters applied to the retrieved Documents. The way runtime filters are applied depends on the filter_policy chosen at retriever initialization. See init method docstring for more details. |
| top_k | Optional[int] | None | The maximum number of documents to return. If using group_by parameters, maximum number of groups to return. |
| return_embedding | Optional[bool] | None | Whether to return the embedding of the retrieved Documents. |
| score_threshold | Optional[float] | None | A minimal score threshold for the result. Score of the returned result might be higher or smaller than the threshold depending on the Distance function used. E.g. for cosine similarity only higher scores will be returned. |
| group_by | Optional[str] | None | Payload field to group by, must be a string or number field. If the field contains more than 1 value, all values will be used for grouping. One point can be in multiple groups. |
| group_size | Optional[int] | None | Maximum amount of points to return per group. Default is 3. |
Was this page helpful?