TransformersZeroShotDocumentClassifier
Classify documents based on the labels you provide and add the predicted label to the document's metadata.
Basic Information
- Type:
haystack_integrations.classifiers.zero_shot_document_classifier.TransformersZeroShotDocumentClassifier - Components it can connect with:
TextFileToDocument:TransformersZeroShotDocumentClassifierreceives documents fromTextFileToDocument.MetadataRouter:TransformersZeroShotDocumentClassifiersends classified documents toMetadataRouterthat routes them further down the pipeline based on their classification.- Any component that outputs documents or accepts documents as input
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents to process. | |
| batch_size | int [Optional] | 1 | Batch size used for processing the content in each document. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | A list of documents with an added metadata field called classification. |
Overview
Performs zero-shot classification of documents based on given labels and adds the predicted label to their metadata.
TransformersZeroShotDocumentClassifier uses a Hugging Face pipeline for zero-shot classification.
In pipeline configuration, provide the model and the set of labels you want to use for categorization. You can configure the component to allow multiple labels to be true by setting multi_label=True.
TransformersZeroShotDocumentClassifier runs the classification on the document's content field by default. If you want it to run on another field, set the classification_field to one of the document's metadata fields.
You can use the following models for zero-shot classification:
valhalla/distilbart-mnli-12-3cross-encoder/nli-distilroberta-basecross-encoder/nli-deberta-v3-xsmall
Usage Example
Using the Component in an Index
In this index, TransformersZeroShotDocumentClassifier classifies documents by sentiment (positive or negative) and sends classified documents to MetadataRouter. MetadataRouter then routes positive documents to one document store and negative documents to another.
components:
TextFileToDocument:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
store_full_path: false
TransformersZeroShotDocumentClassifier:
type: haystack_integrations.classifiers.zero_shot_document_classifier.TransformersZeroShotDocumentClassifier
init_parameters:
model: cross-encoder/nli-deberta-v3-xsmall
labels:
- positive
- negative
multi_label: false
classification_field:
device:
token:
type: env_var
env_vars:
- HF_API_TOKEN
- HF_TOKEN
strict: false
huggingface_pipeline_kwargs:
MetadataRouter:
type: haystack.components.routers.metadata_router.MetadataRouter
init_parameters:
rules:
positive:
operator: OR
conditions:
- field: classification.label
operator: ==
value: positive
negative:
operator: OR
conditions:
- field: classification.label
operator: ==
value: negative
DocumentWriter_Positive:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
policy: NONE
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'positive-sentiment-index'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
DocumentWriter_Negative:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
policy: NONE
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'negative-sentiment-index'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
connections: # Defines how the components are connected
- sender: TextFileToDocument.documents
receiver: TransformersZeroShotDocumentClassifier.documents
- sender: TransformersZeroShotDocumentClassifier.documents
receiver: MetadataRouter.documents
- sender: MetadataRouter.positive
receiver: DocumentWriter_Positive.documents
- sender: MetadataRouter.negative
receiver: DocumentWriter_Negative.documents
inputs: # Define the inputs for your pipeline
files:
- TextFileToDocument.sources
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| model | str | The name or path of a Hugging Face model for zero shot document classification. | |
| labels | List[str] | The set of possible class labels to classify each document into, for example, ["positive", "negative"]. The labels depend on the selected model. | |
| multi_label | bool | False | Whether or not multiple candidate labels can be true. If False, the scores are normalized such that the sum of the label likelihoods for each sequence is 1. If True, the labels are considered independent and probabilities are normalized for each candidate by doing a softmax of the entailment score vs. the contradiction score. |
| classification_field | Optional[str] | None | Name of document's meta field to be used for classification. If not set, Document.content is used by default. |
| device | Optional[ComponentDevice] | None | The device on which the model is loaded. If None, the default device is automatically selected. If a device/device map is specified in huggingface_pipeline_kwargs, it overrides this parameter. |
| token | Optional[Secret] | Secret.from_env_var(['HF_API_TOKEN', 'HF_TOKEN'], strict=False) | The Hugging Face token to use as HTTP bearer authorization. Check your HF token in your account settings. |
| huggingface_pipeline_kwargs | Optional[Dict[str, Any]] | None | Dictionary containing keyword arguments used to initialize the Hugging Face pipeline for text classification. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents to process. | |
| batch_size | int | 1 | Batch size used for processing the content in each document. |
Was this page helpful?