WeaviateEmbeddingRetriever
A retriever that uses Weaviate's vector search to find similar documents based on the embeddings of the query.
Basic Information
- Type:
haystack_integrations.components.retrievers.weaviate.embedding_retriever.WeaviateEmbeddingRetriever
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| query_embedding | List[float] | Embedding of the query. | |
| filters | Optional[Dict[str, Any]] | None | Filters applied to the retrieved Documents. The way runtime filters are applied depends on the filter_policy chosen at retriever initialization. See init method docstring for more details. |
| top_k | Optional[int] | None | The maximum number of documents to return. |
| distance | Optional[float] | None | The maximum allowed distance between Documents' embeddings. |
| certainty | Optional[float] | None | Normalized distance between the result item and the search vector. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] |
Overview
Work in Progress
Bear with us while we're working on adding pipeline examples and most common components connections.
A retriever that uses Weaviate's vector search to find similar documents based on the embeddings of the query.
Usage Example
components:
WeaviateEmbeddingRetriever:
type: weaviate.src.haystack_integrations.components.retrievers.weaviate.embedding_retriever.WeaviateEmbeddingRetriever
init_parameters:
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| document_store | WeaviateDocumentStore | Instance of WeaviateDocumentStore that will be used from this retriever. | |
| filters | Optional[Dict[str, Any]] | None | Custom filters applied when running the retriever. |
| top_k | int | 10 | Maximum number of documents to return. |
| distance | Optional[float] | None | The maximum allowed distance between Documents' embeddings. |
| certainty | Optional[float] | None | Normalized distance between the result item and the search vector. |
| filter_policy | Union[str, FilterPolicy] | FilterPolicy.REPLACE | Policy to determine how filters are applied. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| query_embedding | List[float] | Embedding of the query. | |
| filters | Optional[Dict[str, Any]] | None | Filters applied to the retrieved Documents. The way runtime filters are applied depends on the filter_policy chosen at retriever initialization. See init method docstring for more details. |
| top_k | Optional[int] | None | The maximum number of documents to return. |
| distance | Optional[float] | None | The maximum allowed distance between Documents' embeddings. |
| certainty | Optional[float] | None | Normalized distance between the result item and the search vector. |
Was this page helpful?