Skip to main content

WeaviateEmbeddingRetriever

A retriever that uses Weaviate's vector search to find similar documents based on the embeddings of the query.

Basic Information

  • Type: haystack_integrations.components.retrievers.weaviate.embedding_retriever.WeaviateEmbeddingRetriever

Inputs

ParameterTypeDefaultDescription
query_embeddingList[float]Embedding of the query.
filtersOptional[Dict[str, Any]]NoneFilters applied to the retrieved Documents. The way runtime filters are applied depends on the filter_policy chosen at retriever initialization. See init method docstring for more details.
top_kOptional[int]NoneThe maximum number of documents to return.
distanceOptional[float]NoneThe maximum allowed distance between Documents' embeddings.
certaintyOptional[float]NoneNormalized distance between the result item and the search vector.

Outputs

ParameterTypeDefaultDescription
documentsList[Document]

Overview

Work in Progress

Bear with us while we're working on adding pipeline examples and most common components connections.

A retriever that uses Weaviate's vector search to find similar documents based on the embeddings of the query.

Usage Example

components:
WeaviateEmbeddingRetriever:
type: weaviate.src.haystack_integrations.components.retrievers.weaviate.embedding_retriever.WeaviateEmbeddingRetriever
init_parameters:

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
document_storeWeaviateDocumentStoreInstance of WeaviateDocumentStore that will be used from this retriever.
filtersOptional[Dict[str, Any]]NoneCustom filters applied when running the retriever.
top_kint10Maximum number of documents to return.
distanceOptional[float]NoneThe maximum allowed distance between Documents' embeddings.
certaintyOptional[float]NoneNormalized distance between the result item and the search vector.
filter_policyUnion[str, FilterPolicy]FilterPolicy.REPLACEPolicy to determine how filters are applied.

Run Method Parameters

These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.

ParameterTypeDefaultDescription
query_embeddingList[float]Embedding of the query.
filtersOptional[Dict[str, Any]]NoneFilters applied to the retrieved Documents. The way runtime filters are applied depends on the filter_policy chosen at retriever initialization. See init method docstring for more details.
top_kOptional[int]NoneThe maximum number of documents to return.
distanceOptional[float]NoneThe maximum allowed distance between Documents' embeddings.
certaintyOptional[float]NoneNormalized distance between the result item and the search vector.