TextCleaner
Clean text strings by removing patterns, converting to lowercase, or removing punctuation and numbers.
Basic Information
- Type:
haystack.components.preprocessors.text_cleaner.TextCleaner - Components it can connect with:
- Generators:
TextCleanercan receive generated text replies from generators. - Evaluators:
TextCleanercan send cleaned text to evaluation components for comparison. - Any component that outputs text strings.
- Generators:
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| texts | List[str] | List of strings to clean. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| texts | List[str] | List of cleaned text strings. |
Overview
TextCleaner cleans text strings by applying various transformations. Unlike DocumentCleaner which works with Document objects, TextCleaner operates on plain text strings.
This component is particularly useful for:
- Cleaning up text data before evaluation
- Normalizing text for comparison
- Preprocessing generated responses
Available cleaning options:
remove_regexps: Remove substrings matching regular expressionsconvert_to_lowercase: Convert all characters to lowercaseremove_punctuation: Remove punctuation from textremove_numbers: Remove numerical digits from text
Usage Example
Using the Component in a Pipeline
This example shows a pipeline that cleans generated answers before evaluation.
components:
retriever:
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: ''
embedding_dim: 384
return_embedding: false
create_index: true
similarity: cosine
top_k: 5
text_embedder:
type: haystack.components.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
init_parameters:
model: sentence-transformers/all-MiniLM-L6-v2
prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |-
Answer the question based on the context.
Context: {% for doc in documents %}{{ doc.content }}{% endfor %}
Question: {{ question }}
Answer:
generator:
type: haystack.components.generators.openai.OpenAIGenerator
init_parameters:
api_key:
type: env_var
env_vars:
- OPENAI_API_KEY
strict: true
model: gpt-4o-mini
TextCleaner:
type: haystack.components.preprocessors.text_cleaner.TextCleaner
init_parameters:
remove_regexps:
convert_to_lowercase: true
remove_punctuation: false
remove_numbers: false
connections:
- sender: text_embedder.embedding
receiver: retriever.query_embedding
- sender: retriever.documents
receiver: prompt_builder.documents
- sender: prompt_builder.prompt
receiver: generator.prompt
- sender: generator.replies
receiver: TextCleaner.texts
max_runs_per_component: 100
metadata: {}
inputs:
query:
- text_embedder.text
- prompt_builder.question
outputs:
answers: TextCleaner.texts
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| remove_regexps | Optional[List[str]] | None | A list of regex patterns to remove matching substrings from the text. |
| convert_to_lowercase | bool | False | If True, converts all characters to lowercase. |
| remove_punctuation | bool | False | If True, removes punctuation from the text. |
| remove_numbers | bool | False | If True, removes numerical digits from the text. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| texts | List[str] | List of strings to clean. |
Was this page helpful?