Skip to main content

VertexAIDocumentEmbedder

Embed documents using Vertex AI Embeddings API.

Basic Information

  • Type: haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder
  • Components it can connect with:
    • Preprocessors: Receives documents from Converters or DocumentSplitter in an index.
    • DocumentWriter: Sends embedded documents to DocumentWriter for storage.

Inputs

ParameterTypeDefaultDescription
documentsList[Document]A list of documents to embed.

Outputs

ParameterTypeDefaultDescription
documentsList[Document]A list of documents with embeddings.

Overview

VertexAIDocumentEmbedder embeds documents using the Vertex AI Embeddings API. Use this component in an index to embed documents before storing them in a document store.

Compatible Models

You can find the supported models in the official Google documentation.

Embedding Models in Query Pipelines and Indexes

The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.

This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.

Authorization

This component authenticates using Google Cloud Application Default Credentials (ADCs). Create secrets with the following keys: GCP_PROJECT_ID and GCP_DEFAULT_REGION. For detailed instructions on creating secrets, see Create Secrets.

Usage Example

This index uses VertexAIDocumentEmbedder to embed documents before storing them:

components:
TextFileToDocument:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
store_full_path: false

DocumentSplitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: sentence
split_length: 5
split_overlap: 1

VertexAIDocumentEmbedder:
type: haystack_integrations.components.embedders.google_vertex.document_embedder.VertexAIDocumentEmbedder
init_parameters:
model: text-embedding-005
task_type: RETRIEVAL_DOCUMENT
gcp_region_name:
type: env_var
env_vars:
- GCP_DEFAULT_REGION
strict: false
gcp_project_id:
type: env_var
env_vars:
- GCP_PROJECT_ID
strict: false
batch_size: 32
max_tokens_total: 20000
time_sleep: 30
retries: 3
progress_bar: true
truncate_dim:
meta_fields_to_embed:
embedding_separator: "\n"

DocumentWriter:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'vertex-embeddings'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
policy: OVERWRITE

connections:
- sender: TextFileToDocument.documents
receiver: DocumentSplitter.documents
- sender: DocumentSplitter.documents
receiver: VertexAIDocumentEmbedder.documents
- sender: VertexAIDocumentEmbedder.documents
receiver: DocumentWriter.documents

inputs:
files:
- TextFileToDocument.sources

max_runs_per_component: 100

metadata: {}

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
modelLiteral['text-embedding-004', 'text-embedding-005', ...]Name of the model to use.
task_typeLiteral['RETRIEVAL_DOCUMENT', 'RETRIEVAL_QUERY', ...]RETRIEVAL_DOCUMENTThe type of task for which the embeddings are being generated. See Google documentation.
gcp_region_nameOptional[Secret]Secret.from_env_var('GCP_DEFAULT_REGION', strict=False)The default location to use when making API calls. If not set, uses us-central-1.
gcp_project_idOptional[Secret]Secret.from_env_var('GCP_PROJECT_ID', strict=False)ID of the GCP project to use.
batch_sizeint32The number of documents to process in a single batch.
max_tokens_totalint20000The maximum number of tokens to process in total.
time_sleepint30The time to sleep between retries in seconds.
retriesint3The number of retries in case of failure.
progress_barboolTrueWhether to display a progress bar during processing.
truncate_dimOptional[int]NoneThe dimension to truncate the embeddings to, if specified.
meta_fields_to_embedOptional[List[str]]NoneA list of metadata fields to include in the embeddings.
embedding_separatorstr\nThe separator to use between different embeddings.

Run Method Parameters

These are the parameters you can configure for the run() method. You can pass these parameters at query time through the API, in Playground, or when running a job.

ParameterTypeDefaultDescription
documentsList[Document]A list of documents to embed.