GoogleAIGeminiChatGenerator
Complete chats using Gemini models through Google AI Studio.
Basic Information
- Type:
haystack_integrations.components.generators.google_ai.chat.gemini.GoogleAIGeminiChatGenerator - Components it can connect with:
ChatPromptBuilder:GoogleAIGeminiChatGeneratorreceives a rendered prompt fromChatPromptBuilder.DeepsetAnswerBuilder:GoogleAIGeminiChatGeneratorsends the generated replies toDeepsetAnswerBuilderthroughOutputAdapter(see Usage Examples below).
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage instances, representing the input messages. | |
| streaming_callback | Optional[StreamingCallbackT] | None | A callback function called when a new token is received from the stream. |
| tools | Optional[List[Tool]] | None | A list of tools for which the model can prepare calls. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| replies | List[ChatMessage] | A list containing the generated responses as ChatMessage instances. |
Overview
GoogleAIGeminiChatGenerator will be deprecated after August 2025. Switch to the new GoogleGenAIChatGenerator instead.
Use GoogleAIGeminiChatGenerator to generate replies in the ChatMessage format using models from the Google Gemini family. For a list of supported models, see Google documentation.
Authorization
You need Google Studio API key to use this component. Connect deepset to your Google AI Studio account on the Integrations page.
Connection Instructions
- Click your profile icon in the top right corner and choose Integrations.

- Click Connect next to the provider.
- Enter your API key and submit it.
Usage Example
Initializing the Component
components:
GoogleAIGeminiChatGenerator:
type: google_ai.src.haystack_integrations.components.generators.google_ai.chat.gemini.GoogleAIGeminiChatGenerator
init_parameters:
Using the Component in a Pipeline
This is an example RAG pipeline with GoogleAIGeminiChatGenerator and DeepsetAnswerBuilder:
components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
fuzziness: 0
query_embedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2
embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8
meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
ChatPromptBuilder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- _content:
- text: "You are a helpful assistant answering the user's questions based on the provided documents.\nIf the answer is not in the documents, rely on the web_search tool to find information.\nDo not use your own knowledge.\n"
_role: system
- _content:
- text: "Provided documents:\n{% for document in documents %}\nDocument [{{ loop.index }}] :\n{{ document.content }}\n{% endfor %}\n\nQuestion: {{ query }}\n"
_role: user
required_variables:
variables:
OutputAdapter:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: List[str]
custom_filters:
unsafe: false
GoogleAIGeminiChatGenerator:
type: haystack_integrations.components.generators.google_ai.chat.gemini.GoogleAIGeminiChatGenerator
init_parameters:
api_key:
type: env_var
env_vars:
- GOOGLE_API_KEY
strict: false
model: gemini-1.5-flash
generation_config:
safety_settings:
tools:
tool_config:
streaming_callback:
connections: # Defines how the components are connected
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
receiver: answer_builder.documents
- sender: meta_field_grouping_ranker.documents
receiver: ChatPromptBuilder.documents
- sender: OutputAdapter.output
receiver: answer_builder.replies
- sender: ChatPromptBuilder.prompt
receiver: GoogleAIGeminiChatGenerator.messages
- sender: GoogleAIGeminiChatGenerator.replies
receiver: OutputAdapter.replies
inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "answer_builder.query"
- "ChatPromptBuilder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"
outputs: # Defines the output of your pipeline
documents: "meta_field_grouping_ranker.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| api_key | Secret | Secret.from_env_var('GOOGLE_API_KEY') | Google AI Studio API key. To get a key, see Google AI Studio. |
| model | str | gemini-1.5-flash | Name of the model to use. For available models, see Google documentation. |
| generation_config | Optional[Union[GenerationConfig, Dict[str, Any]]] | None | The generation configuration to use. This can either be a GenerationConfig object or a dictionary of parameters. For available parameters, see the API reference. |
| safety_settings | Optional[Dict[HarmCategory, HarmBlockThreshold]] | None | The safety settings to use. A dictionary with HarmCategory as keys and HarmBlockThreshold as values. For more information, see the API reference |
| tools | Optional[List[Tool]] | None | A list of tools for which the model can prepare calls. |
| tool_config | Optional[content_types.ToolConfigDict] | None | The tool config to use. See the documentation for ToolConfig. |
| streaming_callback | Optional[StreamingCallbackT] | None | A callback function called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage instances, representing the input messages. | |
| streaming_callback | Optional[StreamingCallbackT] | None | A callback function called when a new token is received from the stream. |
| tools | Optional[List[Tool]] | None | A list of tools for which the model can prepare calls. |
Was this page helpful?