VertexAIGeminiChatGenerator
Complete chats using Google Gemini models.
Basic Information
- Type:
haystack_integrations.components.generators.google_vertex.chat.gemini.VertexAIGeminiChatGenerator - Components it can connect with:
ChatPromptBuilder:VertexAIGeminiChatGeneratorreceives a rendered prompt fromChatPromptBuilder.DeepsetAnswerBuilder:VertexAIGeminiChatGeneratorsends the generated replies toDeepsetAnswerBuilderthroughOutputAdapter.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage instances, representing the input messages. | |
| streaming_callback | Optional[StreamingCallbackT] | None | A callback function that is called when a new token is received from the stream. |
| tools | Optional[List[Tool]] | None | A list of tools for which the model can prepare calls. If set, it will override the tools parameter set during component initialization. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| replies | List[ChatMessage] | A list containing the generated responses as ChatMessage instances. |
Overview
VertexAIGeminiChatGenerator enables chat completion using Google Gemini models. For a list of supported models, see Google documentation.
Authorization
VertexAIGeminiChatGenerator uses Google Cloud Application Default Credentials (ADCs) to authenticate. For more information, see the Google documentation. To use this components, you must have an account with a project authorized to use Google Vertex AI endpoints. You can find your project ID in the GCP resource manager.
Usage Example
Initializing the Component
components:
VertexAIGeminiChatGenerator:
type: google_vertex.src.haystack_integrations.components.generators.google_vertex.chat.gemini.VertexAIGeminiChatGenerator
init_parameters:
Using the Component in a Pipeline
This is an example RAG pipeline with VertexAIGeminiChatGenerator and DeepsetAnswerBuilder connected through OutputAdapter:
components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
fuzziness: 0
query_embedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2
embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8
meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
ChatPromptBuilder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- _content:
- text: "You are a helpful assistant answering the user's questions based on the provided documents.\nIf the answer is not in the documents, rely on the web_search tool to find information.\nDo not use your own knowledge.\n"
_role: system
- _content:
- text: "Provided documents:\n{% for document in documents %}\nDocument [{{ loop.index }}] :\n{{ document.content }}\n{% endfor %}\n\nQuestion: {{ query }}\n"
_role: user
required_variables:
variables:
OutputAdapter:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: List[str]
custom_filters:
unsafe: false
VertexAIGeminiChatGenerator:
type: haystack_integrations.components.generators.google_vertex.chat.gemini.VertexAIGeminiChatGenerator
init_parameters:
model: gemini-1.5-flash
project_id:
location:
generation_config:
safety_settings:
tools:
tool_config:
streaming_callback:
connections: # Defines how the components are connected
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
receiver: answer_builder.documents
- sender: meta_field_grouping_ranker.documents
receiver: ChatPromptBuilder.documents
- sender: OutputAdapter.output
receiver: answer_builder.replies
- sender: ChatPromptBuilder.prompt
receiver: VertexAIGeminiChatGenerator.messages
- sender: VertexAIGeminiChatGenerator.replies
receiver: OutputAdapter.replies
inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "answer_builder.query"
- "ChatPromptBuilder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"
outputs: # Defines the output of your pipeline
documents: "meta_field_grouping_ranker.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| model | str | gemini-1.5-flash | Name of the model to use. For available models, see https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models. |
| project_id | Optional[str] | None | ID of the GCP project to use. By default, it is set during Google Cloud authentication. |
| location | Optional[str] | None | The default location to use when making API calls, if not set uses us-central-1. Defaults to None. |
| generation_config | Optional[Union[GenerationConfig, Dict[str, Any]]] | None | Configuration for the generation process. See the [GenerationConfig documentation](https://cloud.google.com/python/docs/reference/aiplatform/latest/vertexai.generative_models.GenerationConfig for a list of supported arguments. |
| safety_settings | Optional[Dict[HarmCategory, HarmBlockThreshold]] | None | Safety settings to use when generating content. See the documentation for HarmBlockThreshold and HarmCategory for more details. |
| tools | Optional[List[Tool]] | None | A list of tools for which the model can prepare calls. |
| tool_config | Optional[ToolConfig] | None | The tool config to use. See the documentation for [ToolConfig] (https://cloud.google.com/vertex-ai/generative-ai/docs/reference/python/latest/vertexai.generative_models.ToolConfig) |
| streaming_callback | Optional[StreamingCallbackT] | None | A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage instances, representing the input messages. | |
| streaming_callback | Optional[StreamingCallbackT] | None | A callback function that is called when a new token is received from the stream. |
| tools | Optional[List[Tool]] | None | A list of tools for which the model can prepare calls. If set, it will override the tools parameter set during component initialization. |
Was this page helpful?