Skip to main content

OpenAIChatGenerator

Complete chats using OpenAI's large language models (LLMs).

Basic Information

  • Type: haystack_integrations.generators.chat.openai.OpenAIChatGenerator
  • Components it can connect with:
    • ChatPromptBuilder: OpenAIChatGenerator receives a rendered prompt from ChatPromptBuilder.
    • DeepsetAnswerBuilder: OpenAIChatGenerator sends the generated replies to DeepsetAnswerBuilder through OutputAdapter.

Inputs

ParameterTypeDefaultDescription
messagesList[ChatMessage]A list of ChatMessage instances representing the input messages.
streaming_callbackOptional[StreamingCallbackT]NoneA callback function that is called when a new token is received from the stream.
generation_kwargsOptional[Dict[str, Any]]NoneAdditional keyword arguments for text generation. These parameters override the parameters in pipeline configuration. For a list of supported parameters, see OpenAI documentation.
toolsOptional[Union[List[Tool], Toolset]]NoneA list of tools or a Toolset for which the model can prepare calls. If set, it will override the tools parameter set during component initialization. This parameter can accept either a list of Tool objects or a Toolset instance.
tools_strictOptional[bool]NoneWhether to enable strict schema adherence for tool calls. If set to True, the model follows exactly the schema provided in the parameters field of the tool definition, but this may increase latency. If set, it overrides the tools_strict parameter in pipeline configuration.

Outputs

ParameterTypeDefaultDescription
repliesList[ChatMessage]A list containing the generated responses as ChatMessage instances.

Overview

OpenAIChatGenerator works with the gpt-4 and o-series models and supports streaming responses from OpenAI API.

You can customize how the text is generated by passing parameters to the OpenAI API. Use the **generation_kwargs argument when you initialize the component or when you run it. Any parameter that works with openai.ChatCompletion.create will work here too.

For a list of supported OpenAI API parameters, see OpenAI documentation.

Authorization

You need an OpenAI API key to use this component. Connect deepset to your OpenAI account on the Integrations page.

Connection Instructions

  1. Click your profile icon in the top right corner and choose Integrations.
    Integrations menu screenshot
  2. Click Connect next to the provider.
  3. Enter your API key and submit it.

Usage Example

Initializing the Component

components:
OpenAIChatGenerator:
type: components.generators.chat.openai.OpenAIChatGenerator
init_parameters:

Using the Component in a Pipeline

This is an example RAG pipeline with OpenAIChatGenerator and DeepsetAnswerBuilder connected through OutputAdapter:

components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
fuzziness: 0

query_embedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2

embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return

document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate

ranker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8

meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id

answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm

ChatPromptBuilder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- _content:
- text: "You are a helpful assistant answering the user's questions based on the provided documents.\nIf the answer is not in the documents, rely on the web_search tool to find information.\nDo not use your own knowledge.\n"
_role: system
- _content:
- text: "Provided documents:\n{% for document in documents %}\nDocument [{{ loop.index }}] :\n{{ document.content }}\n{% endfor %}\n\nQuestion: {{ query }}\n"
_role: user
required_variables:
variables:
OutputAdapter:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: List[str]
custom_filters:
unsafe: false

AzureOpenAIChatGenerator:
type: haystack.components.generators.chat.azure.AzureOpenAIChatGenerator
init_parameters:
azure_endpoint:
api_version: '2023-05-15'
azure_deployment: gpt-4o-mini
api_key:
type: env_var
env_vars:
- AZURE_OPENAI_API_KEY
strict: false
azure_ad_token:
type: env_var
env_vars:
- AZURE_OPENAI_AD_TOKEN
strict: false
organization:
streaming_callback:
timeout:
max_retries:
generation_kwargs:
default_headers:
tools:
tools_strict: false
azure_ad_token_provider:
http_client_kwargs:

connections: # Defines how the components are connected
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
receiver: answer_builder.documents
- sender: meta_field_grouping_ranker.documents
receiver: ChatPromptBuilder.documents
- sender: OutputAdapter.output
receiver: answer_builder.replies
- sender: ChatPromptBuilder.prompt
receiver: AzureOpenAIChatGenerator.messages
- sender: AzureOpenAIChatGenerator.replies
receiver: OutputAdapter.replies

inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "answer_builder.query"
- "ChatPromptBuilder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"

outputs: # Defines the output of your pipeline
documents: "meta_field_grouping_ranker.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers

max_runs_per_component: 100

metadata: {}

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
api_keySecretSecret.from_env_var('OPENAI_API_KEY')The OpenAI API key. Set it on the Integrations page.
modelstrgpt-4o-miniThe name of the model to use.
streaming_callbackOptional[StreamingCallbackT]NoneA callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument.
api_base_urlOptional[str]NoneAn optional base URL.
organizationOptional[str]NoneYour organization ID, defaults to None. See production best practices.
generation_kwargsOptional[Dict[str, Any]]NoneOther parameters to use for the model. These parameters are sent directly to the OpenAI endpoint. See OpenAI documentation for more details. Some of the supported parameters:
- max_tokens: The maximum number of tokens the output text can have.
- temperature: What sampling temperature to use. Higher values mean the model will take more risks. Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer.
- top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. For example, 0.1 means only the tokens comprising the top 10% probability mass are considered.
- n: How many completions to generate for each prompt. For example, if the LLM gets 3 prompts and n is 2, it will generate two completions for each of the three prompts, ending up with 6 completions in total.
- stop: One or more sequences after which the LLM should stop generating tokens. - presence_penalty: What penalty to apply if a token is already present at all. Bigger values mean the model will be less likely to repeat the same token in the text.
- frequency_penalty: What penalty to apply if a token has already been generated in the text. Bigger values mean the model will be less likely to repeat the same token in the text.
- logit_bias: Add a logit bias to specific tokens. The keys of the dictionary are tokens, and the values are the bias to add to that token.
timeoutOptional[float]NoneTimeout for OpenAI client calls. If not set, it defaults to either the OPENAI_TIMEOUT environment variable, or 30 seconds.
max_retriesOptional[int]NoneMaximum number of retries to contact OpenAI after an internal error. If not set, it defaults to either the OPENAI_MAX_RETRIES environment variable, or set to 5.
toolsOptional[Union[List[Tool], Toolset]]NoneA list of tools or a Toolset for which the model can prepare calls. This parameter can accept either a list of Tool objects or a Toolset instance.
tools_strictboolFalseWhether to enable strict schema adherence for tool calls. If set to True, the model will follow exactly the schema provided in the parameters field of the tool definition, but this may increase latency.
http_client_kwargsOptional[Dict[str, Any]]NoneA dictionary of keyword arguments to configure a custom httpx.Clientor httpx.AsyncClient. For more information, see the HTTPX documentation.
timeoutOptional[float]NoneTimeout for OpenAI client calls. If not set, it defaults to either the OPENAI_TIMEOUT environment variable, or 30 seconds.

Run Method Parameters

These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.

ParameterTypeDefaultDescription
messagesList[ChatMessage]A list of ChatMessage instances representing the input messages.
streaming_callbackOptional[StreamingCallbackT]NoneA callback function that is called when a new token is received from the stream.
generation_kwargsOptional[Dict[str, Any]]NoneAdditional keyword arguments for text generation. These parameters override the parameters in pipeline configuration. For a list of supported parameters, see OpenAI documentation.
toolsOptional[Union[List[Tool], Toolset]]NoneA list of tools or a Toolset for which the model can prepare calls. If set, it overrides the t ools parameter in pipeline configuration. This parameter can accept either a list of Tool objects or a Toolset instance.
tools_strictOptional[bool]NoneWhether to enable strict schema adherence for tool calls. If set to True, the model follows exactly the schema provided in the parameters field of the tool definition, but this may increase latency. If set, it overrides the tools_strict parameter in pipeline configuration.