OpenAIChatGenerator
Complete chats using OpenAI's large language models (LLMs).
Basic Information
- Type:
haystack_integrations.generators.chat.openai.OpenAIChatGenerator - Components it can connect with:
ChatPromptBuilder:OpenAIChatGeneratorreceives a rendered prompt fromChatPromptBuilder.DeepsetAnswerBuilder:OpenAIChatGeneratorsends the generated replies toDeepsetAnswerBuilderthroughOutputAdapter.
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage instances representing the input messages. | |
| streaming_callback | Optional[StreamingCallbackT] | None | A callback function that is called when a new token is received from the stream. |
| generation_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for text generation. These parameters override the parameters in pipeline configuration. For a list of supported parameters, see OpenAI documentation. |
| tools | Optional[Union[List[Tool], Toolset]] | None | A list of tools or a Toolset for which the model can prepare calls. If set, it will override the tools parameter set during component initialization. This parameter can accept either a list of Tool objects or a Toolset instance. |
| tools_strict | Optional[bool] | None | Whether to enable strict schema adherence for tool calls. If set to True, the model follows exactly the schema provided in the parameters field of the tool definition, but this may increase latency. If set, it overrides the tools_strict parameter in pipeline configuration. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| replies | List[ChatMessage] | A list containing the generated responses as ChatMessage instances. |
Overview
OpenAIChatGenerator works with the gpt-4 and o-series models and supports streaming responses from OpenAI API.
You can customize how the text is generated by passing parameters to the OpenAI API. Use the **generation_kwargs argument when you initialize the component or when you run it. Any parameter that works with openai.ChatCompletion.create will work here too.
For a list of supported OpenAI API parameters, see OpenAI documentation.
Authorization
You need an OpenAI API key to use this component. Connect deepset to your OpenAI account on the Integrations page.
Connection Instructions
- Click your profile icon in the top right corner and choose Integrations.

- Click Connect next to the provider.
- Enter your API key and submit it.
Usage Example
Initializing the Component
components:
OpenAIChatGenerator:
type: components.generators.chat.openai.OpenAIChatGenerator
init_parameters:
Using the Component in a Pipeline
This is an example RAG pipeline with OpenAIChatGenerator and DeepsetAnswerBuilder connected through OutputAdapter:
components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
fuzziness: 0
query_embedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2
embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8
meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
ChatPromptBuilder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- _content:
- text: "You are a helpful assistant answering the user's questions based on the provided documents.\nIf the answer is not in the documents, rely on the web_search tool to find information.\nDo not use your own knowledge.\n"
_role: system
- _content:
- text: "Provided documents:\n{% for document in documents %}\nDocument [{{ loop.index }}] :\n{{ document.content }}\n{% endfor %}\n\nQuestion: {{ query }}\n"
_role: user
required_variables:
variables:
OutputAdapter:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: List[str]
custom_filters:
unsafe: false
AzureOpenAIChatGenerator:
type: haystack.components.generators.chat.azure.AzureOpenAIChatGenerator
init_parameters:
azure_endpoint:
api_version: '2023-05-15'
azure_deployment: gpt-4o-mini
api_key:
type: env_var
env_vars:
- AZURE_OPENAI_API_KEY
strict: false
azure_ad_token:
type: env_var
env_vars:
- AZURE_OPENAI_AD_TOKEN
strict: false
organization:
streaming_callback:
timeout:
max_retries:
generation_kwargs:
default_headers:
tools:
tools_strict: false
azure_ad_token_provider:
http_client_kwargs:
connections: # Defines how the components are connected
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
receiver: answer_builder.documents
- sender: meta_field_grouping_ranker.documents
receiver: ChatPromptBuilder.documents
- sender: OutputAdapter.output
receiver: answer_builder.replies
- sender: ChatPromptBuilder.prompt
receiver: AzureOpenAIChatGenerator.messages
- sender: AzureOpenAIChatGenerator.replies
receiver: OutputAdapter.replies
inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "answer_builder.query"
- "ChatPromptBuilder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"
outputs: # Defines the output of your pipeline
documents: "meta_field_grouping_ranker.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| api_key | Secret | Secret.from_env_var('OPENAI_API_KEY') | The OpenAI API key. Set it on the Integrations page. |
| model | str | gpt-4o-mini | The name of the model to use. |
| streaming_callback | Optional[StreamingCallbackT] | None | A callback function that is called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument. |
| api_base_url | Optional[str] | None | An optional base URL. |
| organization | Optional[str] | None | Your organization ID, defaults to None. See production best practices. |
| generation_kwargs | Optional[Dict[str, Any]] | None | Other parameters to use for the model. These parameters are sent directly to the OpenAI endpoint. See OpenAI documentation for more details. Some of the supported parameters: - max_tokens: The maximum number of tokens the output text can have. - temperature: What sampling temperature to use. Higher values mean the model will take more risks. Try 0.9 for more creative applications and 0 (argmax sampling) for ones with a well-defined answer. - top_p: An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass. For example, 0.1 means only the tokens comprising the top 10% probability mass are considered. - n: How many completions to generate for each prompt. For example, if the LLM gets 3 prompts and n is 2, it will generate two completions for each of the three prompts, ending up with 6 completions in total. - stop: One or more sequences after which the LLM should stop generating tokens. - presence_penalty: What penalty to apply if a token is already present at all. Bigger values mean the model will be less likely to repeat the same token in the text. - frequency_penalty: What penalty to apply if a token has already been generated in the text. Bigger values mean the model will be less likely to repeat the same token in the text. - logit_bias: Add a logit bias to specific tokens. The keys of the dictionary are tokens, and the values are the bias to add to that token. |
| timeout | Optional[float] | None | Timeout for OpenAI client calls. If not set, it defaults to either the OPENAI_TIMEOUT environment variable, or 30 seconds. |
| max_retries | Optional[int] | None | Maximum number of retries to contact OpenAI after an internal error. If not set, it defaults to either the OPENAI_MAX_RETRIES environment variable, or set to 5. |
| tools | Optional[Union[List[Tool], Toolset]] | None | A list of tools or a Toolset for which the model can prepare calls. This parameter can accept either a list of Tool objects or a Toolset instance. |
| tools_strict | bool | False | Whether to enable strict schema adherence for tool calls. If set to True, the model will follow exactly the schema provided in the parameters field of the tool definition, but this may increase latency. |
| http_client_kwargs | Optional[Dict[str, Any]] | None | A dictionary of keyword arguments to configure a custom httpx.Clientor httpx.AsyncClient. For more information, see the HTTPX documentation. |
| timeout | Optional[float] | None | Timeout for OpenAI client calls. If not set, it defaults to either the OPENAI_TIMEOUT environment variable, or 30 seconds. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| messages | List[ChatMessage] | A list of ChatMessage instances representing the input messages. | |
| streaming_callback | Optional[StreamingCallbackT] | None | A callback function that is called when a new token is received from the stream. |
| generation_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for text generation. These parameters override the parameters in pipeline configuration. For a list of supported parameters, see OpenAI documentation. |
| tools | Optional[Union[List[Tool], Toolset]] | None | A list of tools or a Toolset for which the model can prepare calls. If set, it overrides the t ools parameter in pipeline configuration. This parameter can accept either a list of Tool objects or a Toolset instance. |
| tools_strict | Optional[bool] | None | Whether to enable strict schema adherence for tool calls. If set to True, the model follows exactly the schema provided in the parameters field of the tool definition, but this may increase latency. If set, it overrides the tools_strict parameter in pipeline configuration. |
Was this page helpful?