Skip to main content

GoogleGenAIChatGenerator

Complete chats using Google's Gemini models through the Google Gen AI SDK.

Basic Information

  • Type: haystack_integrations.components.generators.google_genai.chat.chat_generator.GoogleGenAIChatGenerator
  • Components it can connect with:
    • ChatPromptBuilder: GoogleGenAIChatGenerator receives a rendered prompt from ChatPromptBuilder.
    • DeepsetAnswerBuilder: GoogleGenAIChatGenerator sends the generated replies to DeepsetAnswerBuilder through OutputAdapter (see Usage Examples below).

Inputs

ParameterTypeDefaultDescription
messagesList[ChatMessage]A list of ChatMessage instances representing the input messages.
generation_kwargsOptional[Dict[str, Any]]NoneAdditional keyword arguments for the model. For details, see model documentation.
safety_settingsOptional[List[Dict[str, Any]]]NoneSafety settings for content filtering. If provided, it will override the default settings.
streaming_callbackOptional[StreamingCallbackT]NoneA callback function that is called when a new token is received from the stream.
toolsOptional[Union[List[Tool], Toolset]]NoneA list of Tool objects or a Toolset that the model can use.

Outputs

ParameterTypeDefaultDescription
repliesList[ChatMessage]A list containing the generated ChatMessage responses.

Overview

GoogleGenAIChatGenerator provides an interface to Google's Gemini models through the new google-genai SDK,supporting models like gemini-2.0-flash and other Gemini variants.

Authorization

You need Google Studio API key to use this component. Connect Haystack Platform to your Google AI Studio account on the Integrations page. For details, see Use Google Gemini Models.

Usage Example

Using the Component in a Pipeline

This is an example RAG pipeline with GoogleGenAIChatGenerator and DeepsetAnswerBuilder:

components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return
fuzziness: 0

query_embedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2

embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20 # The number of results to return

document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate

ranker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8

meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id

answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm

ChatPromptBuilder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- _content:
- text: "You are a helpful assistant answering the user's questions based on the provided documents.\nIf the answer is not in the documents, rely on the web_search tool to find information.\nDo not use your own knowledge.\n"
_role: system
- _content:
- text: "Provided documents:\n{% for document in documents %}\nDocument [{{ loop.index }}] :\n{{ document.content }}\n{% endfor %}\n\nQuestion: {{ query }}\n"
_role: user
required_variables:
variables:
OutputAdapter:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: List[str]
custom_filters:
unsafe: false

GoogleGenAIChatGenerator:
type: haystack_integrations.components.generators.google_genai.chat.chat_generator.GoogleGenAIChatGenerator
init_parameters:
api_key:
type: env_var
env_vars:
- GOOGLE_API_KEY
- GEMINI_API_KEY
strict: false
api: gemini
model: gemini-2.0-flash
generation_kwargs:
safety_settings:
streaming_callback:
tools:

connections: # Defines how the components are connected
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
receiver: answer_builder.documents
- sender: meta_field_grouping_ranker.documents
receiver: ChatPromptBuilder.documents
- sender: OutputAdapter.output
receiver: answer_builder.replies
- sender: ChatPromptBuilder.prompt
receiver: GoogleGenAIChatGenerator.messages
- sender: GoogleGenAIChatGenerator.replies
receiver: OutputAdapter.replies

inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "answer_builder.query"
- "ChatPromptBuilder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"

outputs: # Defines the output of your pipeline
documents: "meta_field_grouping_ranker.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers

max_runs_per_component: 100

metadata: {}

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
api_keySecretSecret.from_env_var(['GOOGLE_API_KEY', 'GEMINI_API_KEY'], strict=False)Google API key, defaults to the GOOGLE_API_KEY and GEMINI_API_KEY environment variables. Not needed if using Vertex AI with Application Default Credentials. Go to Google AI Studio for a Gemini API key. Go to Google Cloud Vertex AI for a Vertex AI API key.
apiLiteral['gemini', 'vertex']geminiThe API to use. Either "gemini" for the Gemini Developer API or "vertex" for Vertex AI.
vertex_ai_projectOptional[str]NoneGoogle Cloud project ID for Vertex AI. Required when using Vertex AI with Application Default Credentials.
vertex_ai_locationOptional[str]NoneGoogle Cloud location for Vertex AI (for example, "us-central1", "europe-west1"). Required when using Vertex AI with Application Default Credentials.
modelstrgemini-2.0-flashName of the model to use (for example, "gemini-2.0-flash")
generation_kwargsOptional[Dict[str, Any]]NoneConfiguration for generation (temperature, max_tokens, , and more).
safety_settingsOptional[List[Dict[str, Any]]]NoneSafety settings for content filtering.
streaming_callbackOptional[StreamingCallbackT]NoneA callback function that is called when a new token is received from the stream.
toolsOptional[Union[List[Tool], Toolset]]NoneA list of Tool objects or a Toolset that the model can use. Each tool should have a unique name.

Run Method Parameters

These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.

ParameterTypeDefaultDescription
messagesList[ChatMessage]A list of ChatMessage instances representing the input messages.
generation_kwargsOptional[Dict[str, Any]]NoneConfiguration for generation.
safety_settingsOptional[List[Dict[str, Any]]]NoneSafety settings for content filtering.
streaming_callbackOptional[StreamingCallbackT]NoneA callback function that is called when a new token is received from the stream.
toolsOptional[Union[List[Tool], Toolset]]NoneA list of Tool objects or a Toolset that the model can use.