SentenceTransformersTextEmbedder
Embeds strings using Sentence Transformers models.
Basic Information
- Type:
haystack_integrations.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| text | str | Text to embed. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| embedding | List[float] | A dictionary with the following keys: - embedding: The embedding of the input text. |
Overview
Embeds strings using Sentence Transformers models.
You can use it to embed user query and send it to an embedding retriever.
Usage example:
from haystack.components.embedders import SentenceTransformersTextEmbedder
text_to_embed = "I love pizza!"
text_embedder = SentenceTransformersTextEmbedder()
text_embedder.warm_up()
print(text_embedder.run(text_to_embed))
# {'embedding': [-0.07804739475250244, 0.1498992145061493,, ...]}
Usage Example
components:
SentenceTransformersTextEmbedder:
type: components.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
init_parameters:
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| model | str | sentence-transformers/all-mpnet-base-v2 | The model to use for calculating embeddings. Specify the path to a local model or the ID of the model on Hugging Face. |
| device | Optional[ComponentDevice] | None | Overrides the default device used to load the model. |
| token | Optional[Secret] | Secret.from_env_var(['HF_API_TOKEN', 'HF_TOKEN'], strict=False) | An API token to use private models from Hugging Face. |
| prefix | str | A string to add at the beginning of each text to be embedded. You can use it to prepend the text with an instruction, as required by some embedding models, such as E5 and bge. | |
| suffix | str | A string to add at the end of each text to embed. | |
| batch_size | int | 32 | Number of texts to embed at once. |
| progress_bar | bool | True | If True, shows a progress bar for calculating embeddings. If False, disables the progress bar. |
| normalize_embeddings | bool | False | If True, the embeddings are normalized using L2 normalization, so that the embeddings have a norm of 1. |
| trust_remote_code | bool | False | If False, permits only Hugging Face verified model architectures. If True, permits custom models and scripts. |
| local_files_only | bool | False | If True, does not attempt to download the model from Hugging Face Hub and only looks at local files. |
| truncate_dim | Optional[int] | None | The dimension to truncate sentence embeddings to. None does no truncation. If the model has not been trained with Matryoshka Representation Learning, truncation of embeddings can significantly affect performance. |
| model_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for AutoModelForSequenceClassification.from_pretrained when loading the model. Refer to specific model documentation for available kwargs. |
| tokenizer_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for AutoTokenizer.from_pretrained when loading the tokenizer. Refer to specific model documentation for available kwargs. |
| config_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for AutoConfig.from_pretrained when loading the model configuration. |
| precision | Literal['float32', 'int8', 'uint8', 'binary', 'ubinary'] | float32 | The precision to use for the embeddings. All non-float32 precisions are quantized embeddings. Quantized embeddings are smaller in size and faster to compute, but may have a lower accuracy. They are useful for reducing the size of the embeddings of a corpus for semantic search, among other tasks. |
| encode_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for SentenceTransformer.encode when embedding texts. This parameter is provided for fine customization. Be careful not to clash with already set parameters and avoid passing parameters that change the output type. |
| backend | Literal['torch', 'onnx', 'openvino'] | torch | The backend to use for the Sentence Transformers model. Choose from "torch", "onnx", or "openvino". Refer to the Sentence Transformers documentation for more information on acceleration and quantization options. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| text | str | Text to embed. |
Was this page helpful?