Skip to main content

OpenAIDocumentEmbedder

Compute document embeddings using OpenAI models.

Basic Information

  • Type: haystack.components.embedders.openai_document_embedder.OpenAIDocumentEmbedder
  • Components it can connect with:
    • DocumentWriter: OpenAIDocumentEmbedder can send the embedded documents to DocumentWriter that writes them into a document store.
    • PreProcessors: OpenAIDocumentEmbedder can receive the documents to embed from a PreProcessor, like DocumentSplitter.

Inputs

ParameterTypeDefaultDescription
documentsList[Document]A list of documents to embed.

Outputs

ParameterTypeDefaultDescription
documentsList[Document]A list of documents with embeddings.
metaDict[str, Any]Information about the usage of the model, including model name and token usage.

Overview

OpenAIDocumentEmbedder computes document embeddings using OpenAI models. It's used in indexes to embed documents and pass them to DocumentWriter.

Embedding Models in Query Pipelines and Indexes

The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.

This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.

Authorization

You must have an OpenAI API key to use this component. Connect Haystack Platform to your OpenAI account on the Integrations page. For detailed instructions, see Use OpenAI Models.

Usage Example

This is an index that uses OpenAIDocumentEmbedder to embed documents before storing them:

components:
document_embedder:
type: haystack.components.embedders.openai_document_embedder.OpenAIDocumentEmbedder
init_parameters:
api_key:
type: env_var
env_vars:
- OPENAI_API_KEY
strict: false
model: text-embedding-ada-002

document_writer:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
policy: NONE
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- ${OPENSEARCH_USER}
- ${OPENSEARCH_PASSWORD}
use_ssl: true
verify_certs: false
index: my_index
embedding_dim: 1536

connections:
- sender: document_embedder.documents
receiver: document_writer.documents

inputs:
documents:
- document_embedder.documents

max_runs_per_component: 100

metadata: {}

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
api_keySecretSecret.from_env_var('OPENAI_API_KEY')The OpenAI API key. You can set it with an environment variable OPENAI_API_KEY, or pass with this parameter during initialization.
modelstrtext-embedding-ada-002The name of the model to use for calculating embeddings. The default model is text-embedding-ada-002.
dimensionsOptional[int]NoneThe number of dimensions of the resulting embeddings. Only text-embedding-3 and later models support this parameter.
api_base_urlOptional[str]NoneOverrides the default base URL for all HTTP requests.
organizationOptional[str]NoneYour OpenAI organization ID. See OpenAI's Setting Up Your Organization for more information.
prefixstr""A string to add at the beginning of each text.
suffixstr""A string to add at the end of each text.
batch_sizeint32Number of documents to embed at once.
progress_barboolTrueIf True, shows a progress bar when running.
meta_fields_to_embedOptional[List[str]]NoneList of metadata fields to embed along with the document text.
embedding_separatorstr\nSeparator used to concatenate the metadata fields to the document text.
timeoutOptional[float]NoneTimeout for OpenAI client calls. If not set, it defaults to either the OPENAI_TIMEOUT environment variable, or 30 seconds.
max_retriesOptional[int]NoneMaximum number of retries to contact OpenAI after an internal error. If not set, it defaults to either the OPENAI_MAX_RETRIES environment variable, or 5 retries.
http_client_kwargsOptional[Dict[str, Any]]NoneA dictionary of keyword arguments to configure a custom httpx.Clientor httpx.AsyncClient. For more information, see the HTTPX documentation.
raise_on_failureboolFalseWhether to raise an exception if the embedding request fails. If False, the component will log the error and continue processing the remaining documents. If True, it will raise an exception on failure.

Run Method Parameters

These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.

ParameterTypeDefaultDescription
documentsList[Document]A list of documents to embed.