Skip to main content

HuggingFaceAPIDocumentEmbedder

Embed documents using Hugging Face APIs.

Basic Information

  • Type: haystack.components.embedders.hugging_face_api_document_embedder.HuggingFaceAPIDocumentEmbedder
  • Components it can connect with:
    • PreProcessors: HuggingFaceAPIDocumentEmbedder can receive the documents to embed from a PreProcessor, like DocumentSplitter.
    • DocumentWriter: HuggingFaceAPIDocumentEmbedder can send the embedded documents to DocumentWriter that writes them into a document store.

Inputs

ParameterTypeDefaultDescription
documentsList[Document]Documents to embed.

Outputs

ParameterTypeDefaultDescription
documentsList[Document]A list of documents with embeddings.

Overview

Use HuggingFaceAPIDocumentEmbedder with the following Hugging Face APIs:

Embedding Models in Query Pipelines and Indexes

The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.

This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.

Usage Example

Initializing the Component

components:
HuggingFaceAPIDocumentEmbedder:
type: components.embedders.hugging_face_api_document_embedder.HuggingFaceAPIDocumentEmbedder
init_parameters:

Using the Component in an Index

This is an example index for preprocessing multiple document types. The documents resulting from file conversion as sent to the HuggingFaceAPIDocumentEmbedder which embeds them and sends them to the DocumentWriter that writes them into an OpenSearch document store.

components:
file_classifier:
type: haystack.components.routers.file_type_router.FileTypeRouter
init_parameters:
mime_types:
- text/plain
- application/pdf
- text/markdown
- text/html
- application/vnd.openxmlformats-officedocument.wordprocessingml.document
- application/vnd.openxmlformats-officedocument.presentationml.presentation
- application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
- text/csv

text_converter:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8

pdf_converter:
type: haystack.components.converters.pdfminer.PDFMinerToDocument
init_parameters:
line_overlap: 0.5
char_margin: 2
line_margin: 0.5
word_margin: 0.1
boxes_flow: 0.5
detect_vertical: true
all_texts: false
store_full_path: false

markdown_converter:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8

html_converter:
type: haystack.components.converters.html.HTMLToDocument
init_parameters:
# A dictionary of keyword arguments to customize how you want to extract content from your HTML files.
# For the full list of available arguments, see
# the [Trafilatura documentation](https://trafilatura.readthedocs.io/en/latest/corefunctions.html#extract).
extraction_kwargs:
output_format: markdown # Extract text from HTML. You can also also choose "txt"
target_language: # You can define a language (using the ISO 639-1 format) to discard documents that don't match that language.
include_tables: true # If true, includes tables in the output
include_links: true # If true, keeps links along with their targets

docx_converter:
type: haystack.components.converters.docx.DOCXToDocument
init_parameters:
link_format: markdown

pptx_converter:
type: haystack.components.converters.pptx.PPTXToDocument
init_parameters: {}

xlsx_converter:
type: deepset_cloud_custom_nodes.converters.xlsx.XLSXToDocument
init_parameters: {}

csv_converter:
type: haystack.components.converters.csv.CSVToDocument
init_parameters:
encoding: utf-8

joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
sort_by_score: false

joiner_xlsx: # merge split documents with non-split xlsx documents
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
sort_by_score: false

splitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: word
split_length: 250
split_overlap: 30
respect_sentence_boundary: true
language: en

writer:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: ''
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
policy: OVERWRITE

HuggingFaceAPIDocumentEmbedder:
type: haystack.components.embedders.hugging_face_api_document_embedder.HuggingFaceAPIDocumentEmbedder
init_parameters:
api_type: serverless_inference_api
api_params:
model: BAAI/bge-small-en-v1.5
token:
type: env_var
env_vars:
- HF_API_TOKEN
- HF_TOKEN
strict: false
prefix: ''
suffix: ''
truncate: true
normalize: false
batch_size: 32
progress_bar: true
meta_fields_to_embed:
embedding_separator: \n

connections: # Defines how the components are connected
- sender: file_classifier.text/plain
receiver: text_converter.sources
- sender: file_classifier.application/pdf
receiver: pdf_converter.sources
- sender: file_classifier.text/markdown
receiver: markdown_converter.sources
- sender: file_classifier.text/html
receiver: html_converter.sources
- sender: file_classifier.application/vnd.openxmlformats-officedocument.wordprocessingml.document
receiver: docx_converter.sources
- sender: file_classifier.application/vnd.openxmlformats-officedocument.presentationml.presentation
receiver: pptx_converter.sources
- sender: file_classifier.application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
receiver: xlsx_converter.sources
- sender: file_classifier.text/csv
receiver: csv_converter.sources
- sender: text_converter.documents
receiver: joiner.documents
- sender: pdf_converter.documents
receiver: joiner.documents
- sender: markdown_converter.documents
receiver: joiner.documents
- sender: html_converter.documents
receiver: joiner.documents
- sender: docx_converter.documents
receiver: joiner.documents
- sender: pptx_converter.documents
receiver: joiner.documents
- sender: joiner.documents
receiver: splitter.documents
- sender: splitter.documents
receiver: joiner_xlsx.documents
- sender: xlsx_converter.documents
receiver: joiner_xlsx.documents
- sender: csv_converter.documents
receiver: joiner_xlsx.documents
- sender: joiner_xlsx.documents
receiver: HuggingFaceAPIDocumentEmbedder.documents
- sender: HuggingFaceAPIDocumentEmbedder.documents
receiver: writer.documents

inputs: # Define the inputs for your pipeline
files: # This component will receive the files to index as input
- file_classifier.sources

max_runs_per_component: 100

metadata: {}

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
api_typeUnion[HFEmbeddingAPIType, str]The type of Hugging Face API to use. Possible values:
- SERVERLESS_INFERENCE_API: Hugging Face Serverless Inference API. It's a free tier. With this option, you must pass the model and api parameters.
- INFERENCE_ENDPOINTS: Hugging Face Inference Endpoints. A paid tier that requires URL and api parameters.
- TEXT_EMBEDDINGS_INFERENCE: Self-hosted text embeddings inference. Requires URL and api parameters.
api_paramsDict[str, str]A dictionary with the following keys: - model: Hugging Face model ID. Required when api_type is SERVERLESS_INFERENCE_API. - url: URL of the inference endpoint. Required when api_type is INFERENCE_ENDPOINTS or TEXT_EMBEDDINGS_INFERENCE.
tokenOptional[Secret]Secret.from_env_var(['HF_API_TOKEN', 'HF_TOKEN'], strict=False)The Hugging Face token used to connect deepset AI Platform to your Hugging Face account. Check your HF token in your account settings.
prefixstrA string to add at the beginning of each text.
suffixstrA string to add at the end of each text.
truncateOptional[bool]TrueTruncates the input text to the maximum length supported by the model. Applicable when api_type is TEXT_EMBEDDINGS_INFERENCE, or INFERENCE_ENDPOINTS if the backend uses Text Embeddings Inference. If api_type is SERVERLESS_INFERENCE_API, this parameter is ignored.
normalizeOptional[bool]FalseNormalizes the embeddings to unit length. Applicable when api_type is TEXT_EMBEDDINGS_INFERENCE, or INFERENCE_ENDPOINTS if the backend uses Text Embeddings Inference. If api_type is SERVERLESS_INFERENCE_API, this parameter is ignored.
batch_sizeint32Number of documents to process at once.
progress_barboolTrueIf True, shows a progress bar when running.
meta_fields_to_embedOptional[List[str]]NoneList of metadata fields to embed along with the document text.
embedding_separatorstr\nSeparator used to concatenate the metadata fields to the document text.

Run Method Parameters

These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.

ParameterTypeDefaultDescription
documentsList[Document]Documents to embed.