SentenceTransformersDocumentEmbedder
Calculates document embeddings using Sentence Transformers models.
Basic Information
- Type:
haystack_integrations.embedders.sentence_transformers_document_embedder.SentenceTransformersDocumentEmbedder
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents to embed. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | A dictionary with the following keys: - documents: Documents with embeddings. |
Overview
Calculates document embeddings using Sentence Transformers models.
It stores the embeddings in the embedding metadata field of each document.
You can also embed documents' metadata.
Use this component in indexing pipelines to embed input documents
and send them to DocumentWriter to write a into a Document Store.
Usage Example
components:
SentenceTransformersDocumentEmbedder:
type: components.embedders.sentence_transformers_document_embedder.SentenceTransformersDocumentEmbedder
init_parameters:
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| model | str | sentence-transformers/all-mpnet-base-v2 | The model to use for calculating embeddings. Pass a local path or ID of the model on Hugging Face. |
| device | Optional[ComponentDevice] | None | The device to use for loading the model. Overrides the default device. |
| token | Optional[Secret] | Secret.from_env_var(['HF_API_TOKEN', 'HF_TOKEN'], strict=False) | The API token to download private models from Hugging Face. |
| prefix | str | A string to add at the beginning of each document text. Can be used to prepend the text with an instruction, as required by some embedding models, such as E5 and bge. | |
| suffix | str | A string to add at the end of each document text. | |
| batch_size | int | 32 | Number of documents to embed at once. |
| progress_bar | bool | True | If True, shows a progress bar when embedding documents. |
| normalize_embeddings | bool | False | If True, the embeddings are normalized using L2 normalization, so that each embedding has a norm of 1. |
| meta_fields_to_embed | Optional[List[str]] | None | List of metadata fields to embed along with the document text. |
| embedding_separator | str | \n | Separator used to concatenate the metadata fields to the document text. |
| trust_remote_code | bool | False | If False, allows only Hugging Face verified model architectures. If True, allows custom models and scripts. |
| local_files_only | bool | False | If True, does not attempt to download the model from Hugging Face Hub and only looks at local files. |
| truncate_dim | Optional[int] | None | The dimension to truncate sentence embeddings to. None does no truncation. If the model wasn't trained with Matryoshka Representation Learning, truncating embeddings can significantly affect performance. |
| model_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for AutoModelForSequenceClassification.from_pretrained when loading the model. Refer to specific model documentation for available kwargs. |
| tokenizer_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for AutoTokenizer.from_pretrained when loading the tokenizer. Refer to specific model documentation for available kwargs. |
| config_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for AutoConfig.from_pretrained when loading the model configuration. |
| precision | Literal['float32', 'int8', 'uint8', 'binary', 'ubinary'] | float32 | The precision to use for the embeddings. All non-float32 precisions are quantized embeddings. Quantized embeddings are smaller and faster to compute, but may have a lower accuracy. They are useful for reducing the size of the embeddings of a corpus for semantic search, among other tasks. |
| encode_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for SentenceTransformer.encode when embedding documents. This parameter is provided for fine customization. Be careful not to clash with already set parameters and avoid passing parameters that change the output type. |
| backend | Literal['torch', 'onnx', 'openvino'] | torch | The backend to use for the Sentence Transformers model. Choose from "torch", "onnx", or "openvino". Refer to the Sentence Transformers documentation for more information on acceleration and quantization options. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents to embed. |
Was this page helpful?