SentenceTransformersSparseDocumentEmbedder
Calculates sparse embeddings for documents using Sentence Transformers models.
Basic Information
- Type:
haystack.components.embedders.sentence_transformers_sparse_document_embedder.SentenceTransformersSparseDocumentEmbedder - Components it can connect with:
- Any component that produces
documents. It's usually used in indexes after Preprocessors, likeDocumentSplitter. - Any component that consumes
documents, such asDocumentWriter.
- Any component that produces
Inputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents to embed. |
Outputs
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents with sparse embeddings added in the sparse_embedding field. |
Overview
The SentenceTransformersSparseDocumentEmbedder calculates document sparse embeddings using sparse embedding models from Sentence Transformers. It stores the sparse embeddings in the sparse_embedding metadata field of each document. You can also embed documents' metadata.
Use this component in indexes to embed input documents and send them to DocumentWriter to write into a Document Store.
Embedding Models in Query Pipelines and Indexes
The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.
This means the embedders for your indexing and query pipelines must match. For example, if you use CohereDocumentEmbedder to embed your documents, you should use CohereTextEmbedder with the same model to embed your queries.
Usage Example
This index uses SentenceTransformersSparseDocumentEmbedder to create sparse embeddings for documents:
components:
FileTypeRouter:
type: haystack.components.routers.file_type_router.FileTypeRouter
init_parameters:
mime_types:
- text/plain
- application/pdf
- text/markdown
TextFileToDocument:
type: haystack.components.converters.txt.TextFileToDocument
init_parameters:
encoding: utf-8
store_full_path: false
PDFMinerToDocument:
type: haystack.components.converters.pdfminer.PDFMinerToDocument
init_parameters:
store_full_path: false
MarkdownToDocument:
type: haystack.components.converters.markdown.MarkdownToDocument
init_parameters:
store_full_path: false
DocumentJoiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
sort_by_score: false
DocumentSplitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: word
split_length: 250
split_overlap: 30
respect_sentence_boundary: true
language: en
SparseDocumentEmbedder:
type: haystack.components.embedders.sentence_transformers_sparse_document_embedder.SentenceTransformersSparseDocumentEmbedder
init_parameters:
model: prithivida/Splade_PP_en_v2
batch_size: 32
progress_bar: true
DocumentWriter:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: ''
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
policy: OVERWRITE
connections:
- sender: FileTypeRouter.text/plain
receiver: TextFileToDocument.sources
- sender: FileTypeRouter.application/pdf
receiver: PDFMinerToDocument.sources
- sender: FileTypeRouter.text/markdown
receiver: MarkdownToDocument.sources
- sender: TextFileToDocument.documents
receiver: DocumentJoiner.documents
- sender: PDFMinerToDocument.documents
receiver: DocumentJoiner.documents
- sender: MarkdownToDocument.documents
receiver: DocumentJoiner.documents
- sender: DocumentJoiner.documents
receiver: DocumentSplitter.documents
- sender: DocumentSplitter.documents
receiver: SparseDocumentEmbedder.documents
- sender: SparseDocumentEmbedder.documents
receiver: DocumentWriter.documents
max_runs_per_component: 100
metadata: {}
inputs:
files:
- FileTypeRouter.sources
Parameters
Init Parameters
These are the parameters you can configure in Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
| model | str | prithivida/Splade_PP_en_v2 | The model to use for calculating sparse embeddings. Pass a local path or ID of the model on Hugging Face. |
| device | Optional[ComponentDevice] | None | The device to use for loading the model. Overrides the default device. |
| token | Optional[Secret] | The API token to download private models from Hugging Face. | |
| prefix | str | "" | A string to add at the beginning of each document text. |
| suffix | str | "" | A string to add at the end of each document text. |
| batch_size | int | 32 | Number of documents to embed at once. |
| progress_bar | bool | True | If True, shows a progress bar when embedding documents. |
| meta_fields_to_embed | Optional[List[str]] | None | List of metadata fields to embed along with the document text. |
| embedding_separator | str | "\n" | Separator used to concatenate the metadata fields to the document text. |
| trust_remote_code | bool | False | If True, allows custom models and scripts. |
| local_files_only | bool | False | If True, only looks at local files without downloading from Hugging Face Hub. |
| model_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for AutoModelForSequenceClassification.from_pretrained when loading the model. Refer to specific model documentation for available kwargs. |
| tokenizer_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for AutoTokenizer.from_pretrained when loading the tokenizer. Refer to specific model documentation for available kwargs. |
| config_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for AutoConfig.from_pretrained when loading the model configuration. |
| backend | Literal["torch", "onnx", "openvino"] | torch | The backend to use for the Sentence Transformers model. Choose from torch, onnx, or openvino. Refer to the Sentence Transformers documentation for more information on acceleration and quantization options. |
| revision | Optional[str] | None | The specific model version to use. It can be a branch name, a tag name, or a commit ID for a stored model on Hugging Face. |
Run Method Parameters
These are the parameters you can configure for the component's run() method.
| Parameter | Type | Default | Description |
|---|---|---|---|
| documents | List[Document] | Documents to embed. |
Was this page helpful?