OpenAIResponsesChatGenerator
Generate text with LLM models using OpenAI's Responses API with support for reasoning models.
Basic Information
- Type:
haystack.components.generators.chat.openai_responses.OpenAIResponsesChatGenerator - Components it can connect with:
ChatPromptBuilder: Sends rendered chat prompts toOpenAIResponsesChatGenerator.DeepsetAnswerBuilder: Receives generated replies fromOpenAIResponsesChatGeneratorthroughOutputAdapter.OutputAdapter: Converts chat messages to the format needed by downstream components.
Inputs
| Parameter | Type | Description |
|---|---|---|
messages | List[ChatMessage] | A list of ChatMessage objects representing the input messages. |
streaming_callback | Optional[StreamingCallbackT] | A callback function called when a new token is received from the stream. |
generation_kwargs | Optional[Dict[str, Any]] | Additional keyword arguments for text generation. These parameters override the parameters in pipeline configuration. For supported parameters, see OpenAI documentation. |
tools | Optional[Union[List[Tool], Toolset, List[dict]]] | A list of tools or OpenAI/MCP tool definitions for which the model can prepare calls. If set, it overrides the tools parameter set during component initialization. Can accept either a list of Tool objects, or OpenAI/MCP tool definitions as dictionaries. You cannot pass OpenAI/MCP tools and Haystack tools together. |
tools_strict | Optional[bool] | Whether to enable strict schema adherence for tool calls. If set to True, the model follows the schema exactly, but this may increase latency. If set, it overrides the tools_strict parameter in pipeline configuration. |
Outputs
| Parameter | Type | Description |
|---|---|---|
replies | List[ChatMessage] | A list containing the generated responses as ChatMessage instances. |
Overview
OpenAIResponsesChatGenerator uses OpenAI's Responses API to generate chat completions. It supports gpt-4, gpt-5, and o-series models (reasoning models like o1, o3-mini). The default model is gpt-5-mini.
The Responses API is designed for models that can reason. It supports features like reasoning summaries, multi-turn conversations with previous response IDs, and structured outputs.
You can customize text generation by passing parameters to the OpenAI API. Use the generation_kwargs argument when you initialize the component or when you run it. Any parameter that works with openai.Responses.create will work here too.
For a list of supported OpenAI API parameters, see OpenAI documentation.
Authorization
You need an OpenAI API key to use this component. Connect deepset to your OpenAI account on the Integrations page. For details, see Use OpenAI Models.
Reasoning Support
One of the key features of the Responses API is support for reasoning models. You can configure reasoning behavior using the reasoning parameter in generation_kwargs.
The reasoning parameter accepts:
effort: Specifies the level of reasoning effort for the mode. Possible values are:"low","medium", or"high".summary: Specifies how to generate reasoning summaries. You can choose:"auto"or"generate_summary": True/False
OpenAI does not return the actual reasoning tokens, but you can view the summary, if enabled. For more details, see the OpenAI Reasoning documentation.
Multi-Turn Conversations
The Responses API supports multi-turn conversations using previous_response_id. You can pass the response ID from a previous turn to maintain conversation context.
Structured Output
OpenAIResponsesChatGenerator supports structured output generation through the text_format and text parameters in generation_kwargs:
text_format: Pass a Pydantic model to define the structure.text: Pass a JSON schema directly.
- Both Pydantic models and JSON schemas are supported for latest models starting from GPT-4o.
- If both
text_formatandtextare provided,text_formattakes precedence and the JSON schema passed totextis ignored. - Streaming is not supported when using structured outputs.
- Older models only support basic JSON mode through
{"type": "json_object"}. For details, see OpenAI JSON mode documentation. - For complete information, check the OpenAI Structured Outputs documentation.
Usage Example
This is an example RAG pipeline with OpenAIResponsesChatGenerator and DeepsetAnswerBuilder connected through OutputAdapter:
components:
bm25_retriever:
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- ${OPENSEARCH_USER}
- ${OPENSEARCH_PASSWORD}
use_ssl: true
verify_certs: false
top_k: 20
query_embedder:
type: haystack.components.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
init_parameters:
model: intfloat/e5-base-v2
embedding_retriever:
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- ${OPENSEARCH_USER}
- ${OPENSEARCH_PASSWORD}
use_ssl: true
verify_certs: false
top_k: 20
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: haystack.components.rankers.transformers_similarity.TransformersSimilarityRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8
chat_prompt_builder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- _content:
- text: "You are a helpful assistant answering questions based on the provided documents.\nIf the documents don't contain the answer, say so.\nDo not use your own knowledge.\n"
_role: system
- _content:
- text: "Documents:\n{% for document in documents %}\nDocument [{{ loop.index }}]:\n{{ document.content }}\n{% endfor %}\n\nQuestion: {{ query }}\n"
_role: user
openai_responses_chat_generator:
type: haystack.components.generators.chat.openai_responses.OpenAIResponsesChatGenerator
init_parameters:
model: gpt-5-mini
generation_kwargs:
reasoning:
effort: low
summary: auto
temperature: 0.7
max_tokens: 500
output_adapter:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: List[str]
answer_builder:
type: haystack.components.builders.answer_builder.AnswerBuilder
init_parameters: {}
connections:
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: chat_prompt_builder.documents
- sender: ranker.documents
receiver: answer_builder.documents
- sender: chat_prompt_builder.prompt
receiver: openai_responses_chat_generator.messages
- sender: openai_responses_chat_generator.replies
receiver: output_adapter.replies
- sender: output_adapter.output
receiver: answer_builder.replies
max_runs_per_component: 100
inputs:
query:
- bm25_retriever.query
- query_embedder.text
- ranker.query
- chat_prompt_builder.query
- answer_builder.query
filters:
- bm25_retriever.filters
- embedding_retriever.filters
outputs:
documents: ranker.documents
answers: answer_builder.answers
metadata: {}
Parameters
Init parameters
These are the parameters you can configure in Pipeline Builder:
| Parameter | Type | Default | Description |
|---|---|---|---|
api_key | Secret | Secret.from_env_var('OPENAI_API_KEY') | The OpenAI API key. Set it on the Integrations page. |
model | str | gpt-5-mini | The name of the model to use. |
streaming_callback | Optional[StreamingCallbackT] | None | A callback function called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument. |
api_base_url | Optional[str] | None | An optional base URL. |
organization | Optional[str] | None | Your organization ID. See production best practices. |
generation_kwargs | Optional[Dict[str, Any]] | None | Other parameters to use for the model, sent directly to the OpenAI endpoint. See OpenAI documentation for more details. Some supported parameters: temperature (sampling temperature, higher values mean more risks), top_p (nucleus sampling probability mass), previous_response_id (ID of the previous response for multi-turn conversations), text_format (Pydantic model for structured outputs), text (JSON schema for structured outputs), reasoning (dictionary with effort and summary parameters for reasoning models). |
timeout | Optional[float] | 30.0 | Timeout for OpenAI client calls. If not set, it defaults to the OPENAI_TIMEOUT environment variable or 30 seconds. |
max_retries | Optional[int] | five | Maximum number of retries to contact OpenAI after an internal error. If not set, it defaults to the OPENAI_MAX_RETRIES environment variable or five. |
tools | Optional[Union[List[Tool], Toolset, List[dict]]] | None | A list of tools, a Toolset, or OpenAI/MCP tool definitions for which the model can prepare calls. This parameter can accept either a list of Tool objects, a Toolset instance, or OpenAI/MCP tool definitions as dictionaries. Note: You cannot pass OpenAI/MCP tools and Haystack tools together. |
tools_strict | boolean | False | Whether to enable strict schema adherence for tool calls. If set to True, the model follows exactly the schema provided in the parameters field of the tool definition, but this may increase latency. In Response API, tool calls are strict by default. |
http_client_kwargs | Optional[Dict[str, Any]] | None | A dictionary of keyword arguments to configure a custom httpx.Client or httpx.AsyncClient. For more information, see the HTTPX documentation. |
Run method parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
| Parameter | Type | Default | Description |
|---|---|---|---|
messages | List[ChatMessage] | A list of ChatMessage instances representing the input messages. | |
streaming_callback | Optional[StreamingCallbackT] | None | A callback function called when a new token is received from the stream. |
generation_kwargs | Optional[Dict[str, Any]] | None | Additional keyword arguments for text generation. These parameters override the parameters in pipeline configuration. For supported parameters, see OpenAI documentation. |
tools | Optional[Union[List[Tool], Toolset, List[dict]]] | None | A list of tools, a Toolset, or OpenAI/MCP tool definitions for which the model can prepare calls. If set, it overrides the tools parameter in pipeline configuration. Can accept either a list of Tool objects, a Toolset instance, or OpenAI/MCP tool definitions as dictionaries. Note: You cannot pass OpenAI/MCP tools and Haystack tools together. |
tools_strict | Optional[bool] | None | Whether to enable strict schema adherence for tool calls. If set to True, the model follows exactly the schema provided in the parameters field of the tool definition, but this may increase latency. If set, it overrides the tools_strict parameter in pipeline configuration. |
Was this page helpful?