Skip to main content

TogetherAIChatGenerator

Generate text using large language models hosted on Together AI.

Basic Information

  • Type: haystack_integrations.components.generators.togetherai.chat.chat_generator.TogetherAIChatGenerator
  • Components it can connect with:
    • ChatPromptBuilder: TogetherAIChatGenerator receives a rendered prompt from ChatPromptBuilder.
    • DeepsetAnswerBuilder: TogetherAIChatGenerator sends the generated replies to DeepsetAnswerBuilder through OutputAdapter.

Inputs

ParameterTypeDefaultDescription
messagesList[ChatMessage]A list of ChatMessage instances representing the input messages.
streaming_callbackOptional[StreamingCallbackT]NoneA callback function called when the LLM receives a new token from the stream.
generation_kwargsOptional[Dict[str, Any]]NoneAdditional keyword arguments for text generation. These parameters override the parameters in pipeline configuration.
toolsOptional[Union[List[Tool], Toolset]]NoneA list of tools or a Toolset for which the model can prepare calls. If set, it overrides the tools parameter set during component initialization.
tools_strictOptional[bool]NoneWhether to enable strict schema adherence for tool calls.

Outputs

ParameterTypeDefaultDescription
repliesList[ChatMessage]A list containing the generated responses as ChatMessage instances.

Overview

Use TogetherAIChatGenerator to generate text with models hosted on Together AI. For supported models, see Together AI documentation.

You can pass any text generation parameters valid for the Together AI chat completion API directly to this component using the generation_kwargs parameter.

Key Features

  • Primary Compatibility: Designed to work seamlessly with the Together AI chat completion endpoint.
  • Streaming Support: Supports streaming responses from the Together AI chat completion endpoint.
  • Customizability: Supports all parameters supported by the Together AI chat completion endpoint.

This component uses the ChatMessage format for structuring both input and output, ensuring coherent and contextually relevant responses in chat-based text generation scenarios.

Authorization

You need a Together AI API key to use this component. Connect deepset to your Together AI account on the Integrations page. For detailed instructions, see Use Together AI Models

Usage Example

This is an example RAG pipeline with TogetherAIChatGenerator and DeepsetAnswerBuilder connected through OutputAdapter:

components:
bm25_retriever:
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20
fuzziness: 0

query_embedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
normalize_embeddings: true
model: intfloat/e5-base-v2

embedding_retriever:
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: 'Standard-Index-English'
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
top_k: 20

document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate

ranker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
top_k: 8

meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id

answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm

ChatPromptBuilder:
type: haystack.components.builders.chat_prompt_builder.ChatPromptBuilder
init_parameters:
template:
- _content:
- text: "You are a helpful assistant answering the user's questions based on the provided documents.\nDo not use your own knowledge.\n"
_role: system
- _content:
- text: "Provided documents:\n{% for document in documents %}\nDocument [{{ loop.index }}] :\n{{ document.content }}\n{% endfor %}\n\nQuestion: {{ query }}\n"
_role: user
required_variables:
variables:

OutputAdapter:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: List[str]
custom_filters:
unsafe: false

TogetherAIChatGenerator:
type: haystack_integrations.components.generators.togetherai.chat.chat_generator.TogetherAIChatGenerator
init_parameters:
api_key:
type: env_var
env_vars:
- TOGETHER_API_KEY
strict: false
model: meta-llama/Llama-3.3-70B-Instruct-Turbo
streaming_callback:
api_base_url: https://api.together.xyz/v1
generation_kwargs:
tools:
timeout:
max_retries:
http_client_kwargs:

connections:
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
receiver: answer_builder.documents
- sender: meta_field_grouping_ranker.documents
receiver: ChatPromptBuilder.documents
- sender: OutputAdapter.output
receiver: answer_builder.replies
- sender: ChatPromptBuilder.prompt
receiver: TogetherAIChatGenerator.messages
- sender: TogetherAIChatGenerator.replies
receiver: OutputAdapter.replies

inputs:
query:
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "answer_builder.query"
- "ChatPromptBuilder.query"
filters:
- "bm25_retriever.filters"
- "embedding_retriever.filters"

outputs:
documents: "meta_field_grouping_ranker.documents"
answers: "answer_builder.answers"

max_runs_per_component: 100

metadata: {}

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:

ParameterTypeDefaultDescription
api_keySecretSecret.from_env_var('TOGETHER_API_KEY')The Together AI API key.
modelstrmeta-llama/Llama-3.3-70B-Instruct-TurboThe name of the Together AI chat completion model to use.
streaming_callbackOptional[StreamingCallbackT]NoneA callback function called when a new token is received from the stream. The callback function accepts StreamingChunk as an argument.
api_base_urlOptional[str]https://api.together.xyz/v1The Together AI API base URL. For more details, see Together AI documentation.
generation_kwargsOptional[Dict[str, Any]]NoneOther parameters to use for the model. These parameters are sent directly to the Together AI endpoint. See Together AI API documentation for more details. Supported parameters include: max_tokens (maximum number of tokens the output text can have), temperature (sampling temperature for creativity control), top_p (nucleus sampling probability mass), stream (whether to stream back partial progress), safe_prompt (whether to inject a safety prompt before all conversations), random_seed (the seed to use for random sampling), response_format (a JSON schema or Pydantic model that enforces the structure of the model's response).
toolsOptional[Union[List[Tool], Toolset]]NoneA list of tools or a Toolset for which the model can prepare calls. Each tool should have a unique name.
timeoutOptional[float]NoneThe timeout for the Together AI API call.
max_retriesOptional[int]NoneMaximum number of retries to contact Together AI after an internal error. If not set, it defaults to either the OPENAI_MAX_RETRIES environment variable or five.
http_client_kwargsOptional[Dict[str, Any]]NoneA dictionary of keyword arguments to configure a custom httpx.Client or httpx.AsyncClient. For more information, see the HTTPX documentation.

Run Method Parameters

These are the parameters you can configure for the component's run() method. You can pass these parameters at query time through the API, in Playground, or when running a job.

ParameterTypeDefaultDescription
messagesList[ChatMessage]A list of ChatMessage instances representing the input messages.
streaming_callbackOptional[StreamingCallbackT]NoneA callback function called when a new token is received from the stream.
generation_kwargsOptional[Dict[str, Any]]NoneAdditional keyword arguments for text generation. These parameters override the parameters in pipeline configuration.
toolsOptional[Union[List[Tool], Toolset]]NoneA list of tools or a Toolset for which the model can prepare calls. If set, it overrides the tools parameter set during component initialization.
tools_strictOptional[bool]NoneWhether to enable strict schema adherence for tool calls.