DeepsetSnowflakeRetriever
Use this component to connect to a Snowflake database and execute an SQL query.
Basic Information
- Pipeline type: Used in query pipelines.
- Type:
deepset_cloud_custom_nodes.retrievers.snowflake_retriever.DeepsetSnowflakeRetriever
- Components it can connect with:
- DeepsetSnowflakeRetriever typically follows a Generator that turns the natural language query into SQL. To make the Generator's output compatible with DeepsetSnowflakeRetriever's input, add OutputAdapter between them. The Generator returns replies as a list of strings, while DeepsetSnowflakeRetriever requires a query in the form of a single string. The OutputAdapter can convert the list of strings into a single string. For more details, see the Usage Examples section.
- DeepsetSnowflakeRetriever can pass its output table to a PromptBuilder, which then includes it in a rendered prompt for a Generator to create the final answer.
Inputs
Name | Type | Description |
---|---|---|
query | String | A SQL query to execute against a Snowflake database. |
Outputs
Name | Type | Description |
---|---|---|
table | String | The database table matching the query formatted as Markdown. |
dataframe | pd.DataFrame | A pandas dataframe (like an Excel spreadsheet) containing the results of your Snowflake database query |
Overview
Snowflake is a cloud-based data warehousing platform that provides an SQL database engine. With DeepsetSnowflakeRetriever, you can pass all the details needed to query your data in Snowflake with your deepset Cloud pipeline.
You can use DeepsetSnowflakeRetriever on its own. Then, you need to provide an SQL query to it, and you'll get a database table formatted as Markdown and the query as an output. However, a common way is to use DeepsetSnowflakeRetriever preceded by a Generator instructed to turn the user query into SQL followed by another Generator that answers the query based on the database tables DeepsetSnowflakeRetriever retrieved.
Usage Example
This is an example of a query pipeline with DeepsetSnowflakeRetriever and two Generators: one to translate a natural language query into SQL and send it to DeepsetSnowflakeRetriever and another to construct an answer.
# If you need help with the YAML format, have a look at https://docs.cloud.deepset.ai/v2.0/docs/create-a-pipeline#create-a-pipeline-using-pipeline-editor.
# This section defines components that you want to use in your pipelines. Each component must have a name and a type. You can also set the component's parameters here.
# The name is up to you, you can give your component a friendly name. You then use components' names when specifying the connections in the pipeline.
# Type is the class path of the component. You can check the type on the component's documentation page.
components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
use_ssl: True
verify_certs: False
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- "${OPENSEARCH_USER}"
- "${OPENSEARCH_PASSWORD}"
embedding_dim: 1024
similarity: cosine
top_k: 20 # The number of results to return
query_embedder:
type: haystack.components.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
init_parameters:
model: "BAAI/bge-m3"
tokenizer_kwargs:
model_max_length: 1024
embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
use_ssl: True
verify_certs: False
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- "${OPENSEARCH_USER}"
- "${OPENSEARCH_PASSWORD}"
embedding_dim: 1024
similarity: cosine
top_k: 20 # The number of results to return
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: haystack.components.rankers.transformers_similarity.TransformersSimilarityRanker
init_parameters:
model: "BAAI/bge-reranker-v2-m3"
top_k: 5
model_kwargs:
torch_dtype: "torch.float16"
tokenizer_kwargs:
model_max_length: 1024
sql_prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |-
You are a SQL expert working with Snowflake.
Your task is to create a Snowflake SQL query for the given question.
Refrain from explaining your answer. Your answer must be the SQL query
in plain text format without using Markdown.
Here are some relevant tables, a description about them, and their
columns:
{% for document in documents %}
Document[{{ loop.index }}]:
{{ document.content }}
{% endfor %}
User's question: {{ question }}
Generated SQL query:
sql_llm:
type: haystack.components.generators.openai.OpenAIGenerator
init_parameters:
api_key: {"type": "env_var", "env_vars": ["OPENAI_API_KEY"], "strict": False}
model: "gpt-4o"
generation_kwargs:
max_tokens: 650
temperature: 0.0
seed: 0
snowflake_retriever:
type: deepset_cloud_custom_nodes.retrievers.snowflake_retriever.DeepsetSnowflakeRetriever
init_parameters:
user: "<snowflake-user-identifier>"
account: "<snowflake-account-identifier>"
replies_to_sql:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: str
display_prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |-
You are an expert data analyst.
Your role is to answer the user's question {{ question }} using the information
in the table.
You will base your response solely on the information provided in the
table(s).
Do not rely on your knowledge base; only the data that is in the table.
Refrain from using the term "table" in your response, but instead, use
the word "data".
If the table is blank say:
"The specific answer can't be found in the database. Try rephrasing your
question."
Additionally, you will present the table in a tabular format and provide
the SQL query used to extract the relevant rows from the database in
Markdown.
If the table is larger than 10 rows, display the most important rows up
to 10 rows. Your answer must be detailed and provide insights based on
the question and the available data.
SQL query:
{{ sql_query }}
Table:
{{ table }}
Answer:
display_llm:
type: haystack.components.generators.openai.OpenAIGenerator
init_parameters:
api_key: {"type": "env_var", "env_vars": ["OPENAI_API_KEY"], "strict": False}
model: "gpt-4o"
generation_kwargs:
max_tokens: 2000
temperature: 0.0
seed: 0
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
connections:
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: sql_prompt_builder.documents
- sender: ranker.documents
receiver: answer_builder.documents
- sender: sql_prompt_builder.prompt
receiver: sql_llm.prompt
- sender: sql_llm.replies
receiver: replies_to_sql.replies
- sender: replies_to_sql.output
receiver: snowflake_retriever.query
- sender: snowflake_retriever.table
receiver: display_prompt_builder.table
- sender: replies_to_sql.output
receiver: display_prompt_builder.sql_query
- sender: display_prompt_builder.prompt
receiver: display_llm.prompt
- sender: display_prompt_builder.prompt
receiver: answer_builder.prompt
- sender: display_llm.replies
receiver: answer_builder.replies
inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "sql_prompt_builder.question"
- "display_prompt_builder.question"
- "answer_builder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"
outputs: # Defines the output of your pipeline
documents: "ranker.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers
# If you need help with the YAML format, have a look at https://docs.cloud.deepset.ai/v2.0/docs/create-a-pipeline#create-a-pipeline-using-pipeline-editor.
# This section defines components that you want to use in your pipelines. Each component must have a name and a type. You can also set the component's parameters here.
# The name is up to you, you can give your component a friendly name. You then use components' names when specifying the connections in the pipeline.
# Type is the class path of the component. You can check the type on the component's documentation page.
components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
use_ssl: True
verify_certs: False
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- "${OPENSEARCH_USER}"
- "${OPENSEARCH_PASSWORD}"
embedding_dim: 1024
similarity: cosine
top_k: 20 # The number of results to return
query_embedder:
type: haystack.components.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
init_parameters:
model: "BAAI/bge-m3"
tokenizer_kwargs:
model_max_length: 1024
embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
use_ssl: True
verify_certs: False
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- "${OPENSEARCH_USER}"
- "${OPENSEARCH_PASSWORD}"
embedding_dim: 1024
similarity: cosine
top_k: 20 # The number of results to return
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: haystack.components.rankers.transformers_similarity.TransformersSimilarityRanker
init_parameters:
model: "BAAI/bge-reranker-v2-m3"
top_k: 5
model_kwargs:
torch_dtype: "torch.float16"
tokenizer_kwargs:
model_max_length: 1024
sql_prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |-
You are a SQL expert working with Snowflake.
Your task is to create a Snowflake SQL query for the given question.
Refrain from explaining your answer. Your answer must be the SQL query
in plain text format without using Markdown.
Here are some relevant tables, a description about them, and their
columns:
{% for document in documents %}
Document[{{ loop.index }}]:
{{ document.content }}
{% endfor %}
User's question: {{ question }}
Generated SQL query:
sql_llm:
type: haystack.components.generators.openai.OpenAIGenerator
init_parameters:
api_key: {"type": "env_var", "env_vars": ["OPENAI_API_KEY"], "strict": False}
model: "gpt-4o"
generation_kwargs:
max_tokens: 650
temperature: 0.0
seed: 0
snowflake_retriever:
type: deepset_cloud_custom_nodes.retrievers.snowflake_retriever.DeepsetSnowflakeRetriever
init_parameters:
user: "<snowflake-user-identifier>"
account: "<snowflake-account-identifier>"
replies_to_sql:
type: haystack.components.converters.output_adapter.OutputAdapter
init_parameters:
template: '{{ replies[0] }}'
output_type: str
display_prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |-
You are an expert data analyst.
Your role is to answer the user's question {{ question }} using the information
in the table.
You will base your response solely on the information provided in the
table(s).
Do not rely on your knowledge base; only the data that is in the table.
Refrain from using the term "table" in your response, but instead, use
the word "data".
If the table is blank say:
"The specific answer can't be found in the database. Try rephrasing your
question."
Additionally, you will present the table in a tabular format and provide
the SQL query used to extract the relevant rows from the database in
Markdown.
If the table is larger than 10 rows, display the most important rows up
to 10 rows. Your answer must be detailed and provide insights based on
the question and the available data.
SQL query:
{{ sql_query }}
Table:
{{ table }}
Answer:
display_llm:
type: haystack.components.generators.openai.OpenAIGenerator
init_parameters:
api_key: {"type": "env_var", "env_vars": ["OPENAI_API_KEY"], "strict": False}
model: "gpt-4o"
generation_kwargs:
max_tokens: 2000
temperature: 0.0
seed: 0
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
connections:
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: sql_prompt_builder.documents
- sender: ranker.documents
receiver: answer_builder.documents
- sender: sql_prompt_builder.prompt
receiver: sql_llm.prompt
- sender: sql_llm.replies
receiver: replies_to_sql.replies
- sender: replies_to_sql.output
receiver: snowflake_retriever.query
- sender: snowflake_retriever.table
receiver: display_prompt_builder.table
- sender: replies_to_sql.output
receiver: display_prompt_builder.sql_query
- sender: display_prompt_builder.prompt
receiver: display_llm.prompt
- sender: display_prompt_builder.prompt
receiver: answer_builder.prompt
- sender: display_llm.replies
receiver: answer_builder.replies
inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "sql_prompt_builder.question"
- "display_prompt_builder.question"
- "answer_builder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"
outputs: # Defines the output of your pipeline
documents: "ranker.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers
You can use one of our ready-made Text-to-SQL
pipeline templates.
Init Parameters
Parameter | Type | Possible values | Description |
---|---|---|---|
user | String | User's Snowflake login. Required. | |
account | String | Snowflake account identifier. Required. | |
api_key | Secret | Default: Secret.from_env_var("SNOWFLAKE_API_KEY") | Snowflake account password. Required. |
database | String | Default: None | Name of the database to use. Optional. |
db_schema | String | Default: None | Name of the schema to use. Optional. |
warehouse | String | Default: None | Name of the warehouse to use. Optional. |
login_timeout | Integer | Default: 60 | Timeout in seconds for login. The default is 60 seconds. Optional. |
Updated 2 months ago