DeepsetFileToBase64Image
Convert documents sourced from image files (PNG, JPG, JPEG, GIF) to base64-encoded images.
Basic Information
- Pipeline type: Query
- Type:
deepset_cloud_custom_nodes.converters.file_to_image.DeepsetFileToBase64Image
- Components it can connect with:
- Any component that outputs a list of
Document
objects sourced from JPG, JPEG, PNG, or GIF. - Any component that accepts a list of
Base64Image
objects as input - DeepsetFileDownloader:
DeepsetFileToBase64Image
can receive documents fromDeepsetFileDownloader
. - DeepsetAzureOpenAIVisionGenerator: This Generator can receive Base64Image objects to run visual question answering on them.
- Any component that outputs a list of
Inputs
Name | Type | Description |
---|---|---|
documents | List of Document objects | A list of documents with image information in their metadata. The expected metadata format is: meta = {"file_path": str} .If this metadata is not present for a document, this document is skipped and the component shows a warning message. |
Outputs
Name | Type | Description |
---|---|---|
documents | List of Document objects | A list of text documents. |
base64_images | List of Base64Image objects | A list of base64-encoded images corresponding to the documents they were converted from. |
Overview
DeepsetFileToBase64Image
is a converter used in visual question answering pipelines to extract base mages from the downloaded images. These images are then sent to a visual Generator that can process them. It converts documents accompanied by metadata containing the file_path
pointing to the location of the image.
Converting documents doesn't happen if:
- The
file_path
doesn't exist in the metadata. - The file path doesn't start with the expected root path.
- The file path doesn't end with
.png
,gif
,jpg
, orjpeg
.
Usage Example
This component is used in our visual question answering templates, where it receives documents from DeepsetFileDownloader
and sends them to DeepsetAzureOpenAIVisionGenerator
.
This is how you connect the components in Builder:
![The components connected in Builder.](https://files.readme.io/efeea17baa75ee8d9a3a84290fa586fef9410432e637595417e8aed423aa68b1-baseimage_converter_example.png)
And here's the complete pipeline YAML:
components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
embedding_dim: 1024
top_k: 20 # The number of results to return
fuzziness: 0
query_embedder:
type: haystack.components.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
init_parameters:
normalize_embeddings: true
model: "BAAI/bge-m3"
tokenizer_kwargs:
model_max_length: 1024
embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
embedding_dim: 1024
top_k: 20 # The number of results to return
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: haystack.components.rankers.transformers_similarity.TransformersSimilarityRanker
init_parameters:
model: "BAAI/bge-reranker-v2-m3"
top_k: 5
model_kwargs:
torch_dtype: "torch.float16"
tokenizer_kwargs:
model_max_length: 1024
meta_field_grouping_ranker:
type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
init_parameters:
group_by: file_id
subgroup_by:
sort_docs_by: split_id
image_downloader:
type: deepset_cloud_custom_nodes.augmenters.deepset_file_downloader.DeepsetFileDownloader
init_parameters:
file_extensions:
- ".png"
- .jpeg
- .jpg
prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |-
Answer the question briefly and precisely based on the pictures.
Give reasons for your answer.
When answering the question only provide references within the answer text.
Only use references in the form [NUMBER OF IMAGE] if you are using information from a image.
For example, if the first image is used in the answer add [1] and if the second image is used then use [2], etc.
Never name the images, but always enter a number in square brackets as a reference.
Question: {{ question }}
Answer:
required_variables: "*"
llm:
type: deepset_cloud_custom_nodes.generators.openai_vision.DeepsetOpenAIVisionGenerator
init_parameters:
api_key: {"type": "env_var", "env_vars": ["OPENAI_API_KEY"], "strict": false}
model: "gpt-4o"
generation_kwargs:
max_tokens: 650
temperature: 0
seed: 0
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
DeepsetFileToBase64Image:
type: deepset_cloud_custom_nodes.converters.file_to_image.DeepsetFileToBase64Image
init_parameters:
detail: auto
connections: # Defines how the components are connected
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
receiver: image_downloader.documents
- sender: prompt_builder.prompt
receiver: llm.prompt
- sender: image_downloader.documents
receiver: answer_builder.documents
- sender: prompt_builder.prompt
receiver: answer_builder.prompt
- sender: llm.replies
receiver: answer_builder.replies
- sender: DeepsetFileToBase64Image.base64_images
receiver: llm.images
- sender: image_downloader.documents
receiver: DeepsetFileToBase64Image.documents
inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "prompt_builder.question"
- "answer_builder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"
outputs: # Defines the output of your pipeline
documents: "DeepsetFileToBase64Image.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers
max_runs_per_component: 100
metadata: {}
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
Parameter | Type | Possible values | Description |
---|---|---|---|
detail | Literal | auto low hight Default: auto | Controls how the model processes the image and generates its textual understanding. By default, the model uses the auto setting which checks the image input size and chooses the best setting to use. For details see OpenAI documentation.Required. |
Run Method Parameters
These are the parameters you can configure for the component's run()
method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
Parameter | Type | Description |
---|---|---|
documents | List of Document objects. | A list of documents with image information in their metadata. The expected metadata is: meta = {"file_path": str} . If this metadata is not present in a document, the document is skipped and the component produces a warning message.Required. |
Updated 7 days ago