DeepsetFileToBase64Image

Convert documents sourced from image files (PNG, JPG, JPEG, GIF) to base64-encoded images.

Basic Information

  • Pipeline type: Query
  • Type: deepset_cloud_custom_nodes.converters.file_to_image.DeepsetFileToBase64Image
  • Components it can connect with:
    • Any component that outputs a list of Document objects sourced from JPG, JPEG, PNG, or GIF.
    • Any component that accepts a list of Base64Image objects as input
    • DeepsetFileDownloader: DeepsetFileToBase64Image can receive documents from DeepsetFileDownloader.
    • DeepsetAzureOpenAIVisionGenerator: This Generator can receive Base64Image objects to run visual question answering on them.

Inputs

NameTypeDescription
documentsList of Document objectsA list of documents with image information in their metadata. The expected metadata format is: meta = {"file_path": str}.
If this metadata is not present for a document, this document is skipped and the component shows a warning message.

Outputs

NameTypeDescription
documentsList of Document objectsA list of text documents.
base64_imagesList of Base64Image objectsA list of base64-encoded images corresponding to the documents they were converted from.

Overview

DeepsetFileToBase64Image is a converter used in visual question answering pipelines to extract base mages from the downloaded images. These images are then sent to a visual Generator that can process them. It converts documents accompanied by metadata containing the file_path pointing to the location of the image.

Converting documents doesn't happen if:

  • The file_path doesn't exist in the metadata.
  • The file path doesn't start with the expected root path.
  • The file path doesn't end with .png, gif, jpg, or jpeg.

Usage Example

This component is used in our visual question answering templates, where it receives documents from DeepsetFileDownloader and sends them to DeepsetAzureOpenAIVisionGenerator.

This is how you connect the components in Builder:

The components connected in Builder.

And here's the complete pipeline YAML:


components:
  bm25_retriever: # Selects the most similar documents from the document store
    type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
    init_parameters:
      document_store:
        type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
        init_parameters:
          embedding_dim: 1024
      top_k: 20 # The number of results to return
      fuzziness: 0

  query_embedder:
    type: haystack.components.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
    init_parameters:
      normalize_embeddings: true
      model: "BAAI/bge-m3"
      tokenizer_kwargs:
        model_max_length: 1024

  embedding_retriever: # Selects the most similar documents from the document store
    type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
    init_parameters:
      document_store:
        type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
        init_parameters:
          embedding_dim: 1024
      top_k: 20 # The number of results to return

  document_joiner:
    type: haystack.components.joiners.document_joiner.DocumentJoiner
    init_parameters:
      join_mode: concatenate

  ranker:
    type: haystack.components.rankers.transformers_similarity.TransformersSimilarityRanker
    init_parameters:
      model: "BAAI/bge-reranker-v2-m3"
      top_k: 5
      model_kwargs:
        torch_dtype: "torch.float16"
      tokenizer_kwargs:
        model_max_length: 1024

  meta_field_grouping_ranker:
    type: haystack.components.rankers.meta_field_grouping_ranker.MetaFieldGroupingRanker
    init_parameters:
      group_by: file_id
      subgroup_by:
      sort_docs_by: split_id

  image_downloader:
    type: deepset_cloud_custom_nodes.augmenters.deepset_file_downloader.DeepsetFileDownloader
    init_parameters:
      file_extensions:
      - ".png"
      - .jpeg
      - .jpg
  prompt_builder:
    type: haystack.components.builders.prompt_builder.PromptBuilder
    init_parameters:
      template: |-
        Answer the question briefly and precisely based on the pictures.
        Give reasons for your answer.
        When answering the question only provide references within the answer text.
        Only use references in the form [NUMBER OF IMAGE] if you are using information from a image. 
        For example, if the first image is used in the answer add [1] and if the second image is used then use [2], etc. 
        Never name the images, but always enter a number in square brackets as a reference. 
        Question: {{ question }}
        Answer: 

      required_variables: "*"
  llm:
    type: deepset_cloud_custom_nodes.generators.openai_vision.DeepsetOpenAIVisionGenerator
    init_parameters:
      api_key: {"type": "env_var", "env_vars": ["OPENAI_API_KEY"], "strict": false}
      model: "gpt-4o"
      generation_kwargs:
        max_tokens: 650
        temperature: 0
        seed: 0

  answer_builder:
    type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
    init_parameters:
      reference_pattern: acm

  DeepsetFileToBase64Image:
    type: deepset_cloud_custom_nodes.converters.file_to_image.DeepsetFileToBase64Image
    init_parameters:
      detail: auto

connections:  # Defines how the components are connected
- sender: bm25_retriever.documents
  receiver: document_joiner.documents
- sender: query_embedder.embedding
  receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
  receiver: document_joiner.documents
- sender: document_joiner.documents
  receiver: ranker.documents
- sender: ranker.documents
  receiver: meta_field_grouping_ranker.documents
- sender: meta_field_grouping_ranker.documents
  receiver: image_downloader.documents
- sender: prompt_builder.prompt
  receiver: llm.prompt
- sender: image_downloader.documents
  receiver: answer_builder.documents
- sender: prompt_builder.prompt
  receiver: answer_builder.prompt
- sender: llm.replies
  receiver: answer_builder.replies
- sender: DeepsetFileToBase64Image.base64_images
  receiver: llm.images
- sender: image_downloader.documents
  receiver: DeepsetFileToBase64Image.documents

inputs:  # Define the inputs for your pipeline
  query:  # These components will receive the query as input
  - "bm25_retriever.query"
  - "query_embedder.text"
  - "ranker.query"
  - "prompt_builder.question"
  - "answer_builder.query"
  filters:  # These components will receive a potential query filter as input
  - "bm25_retriever.filters"
  - "embedding_retriever.filters"

outputs:  # Defines the output of your pipeline
  documents: "DeepsetFileToBase64Image.documents" # The output of the pipeline is the retrieved documents
  answers: "answer_builder.answers"  # The output of the pipeline is the generated answers

max_runs_per_component: 100

metadata: {}

Parameters

Init Parameters

These are the parameters you can configure in Pipeline Builder:


ParameterTypePossible valuesDescription
detailLiteralauto
low
hight
Default: auto
Controls how the model processes the image and generates its textual understanding. By default, the model uses the auto setting which checks the image input size and chooses the best setting to use. For details see OpenAI documentation.
Required.

Run Method Parameters

These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.


ParameterTypeDescription
documentsList of Document objects.A list of documents with image information in their metadata. The expected metadata is: meta = {"file_path": str}. If this metadata is not present in a document, the document is skipped and the component produces a warning message.
Required.