DeepsetNvidiaTextEmbedder
Embed strings of text using embedding models by NVIDIA Triton on optimized hardware.
Basic Information
- Pipeline type: Query
- Type:
deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
- Components it most often connects with:
- Query:
DeepsetNvidiaDocumentEmbedder
receives the query to embed fromQuery
. - Embedding Retrievers:
DeepsetNvidiaDocumentEmbedder
can send the embedded query to an Embedding Retriever that uses it to find matching documents.
- Query:
Inputs
Name | Type | Description |
---|---|---|
text | String | The text to embed. |
Outputs
Name | Type | Description |
---|---|---|
embedding | List of floats | The embedding of the text. |
meta | Dictionary | Metadata regarding the usage statistics. |
Overview
NvidiaTextEmbedder
uses NVIDTIA Triton models to embed a string, such as a query. This is useful if your pipeline performs vector-based retrieval. The Embedding Retriever can then used the embedded query to find matching documents in the document store.
This component runs on optimized hardware in deepset Cloud, which means it doesn't work if you export it to a local Python file. If you're planning to export, use SentenceTransformersTextEmbedder instead.
Embedding Models in Query and Indexing Pipelines
The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.
This means the embedders for your indexing and query pipelines must match. For example, if you use
CohereDocumentEmbedder
to embed your documents, you should useCohereTextEmbedder
with the same model to embed your queries.
Usage Example
This is an example of a DeepsetNvidiaTextEmbedder
used in a query pipeline. It receives the text to embed from Query
and then sends the embedded query to OpenSearchEmbeddingRetriever
:
Here's the YAML configuration:
components:
DeepsetNvidiaTextEmbedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
model: intfloat/multilingual-e5-base
prefix: ''
suffix: ''
truncate: null
normalize_embeddings: true
timeout: null
backend_kwargs: null
OpenSearchEmbeddingRetriever:
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
use_ssl: true
verify_certs: false
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- ${OPENSEARCH_USER}
- ${OPENSEARCH_PASSWORD}
embedding_dim: 1024
similarity: cosine
filters: null
top_k: 10
filter_policy: replace
custom_query: null
raise_on_failure: true
efficient_filtering: false
connections:
- sender: DeepsetNvidiaTextEmbedder.embedding
receiver: OpenSearchEmbeddingRetriever.query_embedding
max_runs_per_component: 100
metadata: {}
inputs:
query:
- DeepsetNvidiaTextEmbedder.text
Init Parameters
Parameter | Type | Possible values | Description |
---|---|---|---|
model | DeepsetNVIDIAEmbeddingModels | Default: DeepsetNVIDIAEmbeddingModels.INTFLOAT_MULTILINGUAL_E5_BASE | The model to use for calculating embeddings. Choose the model from the list in Builder. Required. |
prefix | String | Default: "" | A string to add at the beginning of the string being embedded. Required. |
suffix | String | Default: "" | A string to add at the end of the string being embedded. Required. |
truncate | EmbeddingTruncateMode | START , END , NONE Default: None | Specifies how to truncate inputs longer than the maximum token length. Possible options are: START , END , NONE .If set to START , the input is truncated from the start.If set to END , the input is truncated from the end.If set to NONE , returns an error if the input is too long. Optional. |
normalize_embeddings | Boolean | True False Default: True | Whether to normalize the embeddings by dividing the embedding by its L2 norm. Required. |
timeout | Float | Default: None | Timeout for request calls in seconds. Optional. |
backend_kwargs | Dictionary | Default: None | Keyword arguments to further customize model behavior. Optional. |
Updated 16 days ago