DeepsetPDFDocumentToBase64Image
Convert documents sources from PDF files to base64-encoded images.
Basic Information
- Pipeline type: Query
- Type:
deepset_cloud_custom_nodes.converters.pdf_to_image.DeepsetPDFDocumentToBase64Image
- Components it can connect with:
- Any component that outputs a list of
Document
objects - Any component that accepts a list of
Base64Image
objects as input - DeepsetFileDownloader:
DeepsetPDFDocumentToBase64Image
can receive documents fromDeepsetFileDownloader
. - DeepsetAzureOpenAIVisionGenerator: This Generator can receive Base64Image objects to run visual question answering on them.
- Any component that outputs a list of
Inputs
Name | Type | Description |
---|---|---|
documents | List of Document objects | A list of documents with image information in their metadata. The expected metadata format is:meta = {"file_path": str, "page_number": int} |
Outputs
Name | Type | Description |
---|---|---|
documents | List of Document objects | A list of text documents. |
base64_images | List of Base64Image objects | A list of base64-encoded images corresponding to the documents they were converted from. |
Overview
DeepsetPDFDocumentToBase64Image
is a converter used in visual question answering pipelines to extract images from the downloaded PDFs. These images are then sent to a visual Generator that can process them. It converts documents accompanied by metadata containing the file_path
and the page_number
pointing to the location of the image.
Converting documents doesn't happen if:
- The
file_path
doesn't exist in the metadata. - The
page_number
doesn't exist in the metadata. - The file path doesn't start with the expected root path.
- The file path doesn't end with
.pdf
.
Usage Example
This component is used in our visual question answering templates, where it receives documents from DeepsetFileDownloader
and sends them to DeepsetAzureOpenAIVisionGenerator
.
This is how you connect the components in Builder:
And here's the complete pipeline YAML:
components:
bm25_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
use_ssl: True
verify_certs: False
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- "${OPENSEARCH_USER}"
- "${OPENSEARCH_PASSWORD}"
embedding_dim: 1024
similarity: cosine
top_k: 20 # The number of results to return
query_embedder:
type: haystack.components.embedders.sentence_transformers_text_embedder.SentenceTransformersTextEmbedder
init_parameters:
model: "BAAI/bge-m3"
tokenizer_kwargs:
model_max_length: 1024
embedding_retriever: # Selects the most similar documents from the document store
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
use_ssl: True
verify_certs: False
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- "${OPENSEARCH_USER}"
- "${OPENSEARCH_PASSWORD}"
embedding_dim: 1024
similarity: cosine
top_k: 20 # The number of results to return
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
ranker:
type: haystack.components.rankers.transformers_similarity.TransformersSimilarityRanker
init_parameters:
model: "BAAI/bge-reranker-v2-m3"
top_k: 5
model_kwargs:
torch_dtype: "torch.float16"
tokenizer_kwargs:
model_max_length: 1024
image_downloader:
type: deepset_cloud_custom_nodes.augmenters.deepset_file_downloader.DeepsetFileDownloader
init_parameters:
file_extensions:
- ".pdf"
pdf_to_image:
type: deepset_cloud_custom_nodes.converters.pdf_to_image.DeepsetPDFDocumentToBase64Image
init_parameters:
detail: "high"
prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |-
Answer the question briefly and precisely based on the pictures.
Give reasons for your answer.
When answering the question only provide references within the answer text.
Only use references in the form [NUMBER OF IMAGE] if you are using information from a image.
For example, if the first image is used in the answer add [1] and if the second image is used then use [2], etc.
Never name the images, but always enter a number in square brackets as a reference.
Question: {{ question }}
Answer:
llm:
type: deepset_cloud_custom_nodes.generators.openai_vision.DeepsetOpenAIVisionGenerator
init_parameters:
api_key: {"type": "env_var", "env_vars": ["OPENAI_API_KEY"], "strict": False}
model: "gpt-4o"
generation_kwargs:
max_tokens: 650
temperature: 0.0
seed: 0
answer_builder:
type: deepset_cloud_custom_nodes.augmenters.deepset_answer_builder.DeepsetAnswerBuilder
init_parameters:
reference_pattern: acm
connections: # Defines how the components are connected
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: query_embedder.embedding
receiver: embedding_retriever.query_embedding
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: document_joiner.documents
receiver: ranker.documents
- sender: ranker.documents
receiver: image_downloader.documents
- sender: image_downloader.documents
receiver: pdf_to_image.documents
- sender: pdf_to_image.base64_images
receiver: llm.images
- sender: prompt_builder.prompt
receiver: llm.prompt
- sender: image_downloader.documents
receiver: answer_builder.documents
- sender: prompt_builder.prompt
receiver: answer_builder.prompt
- sender: llm.replies
receiver: answer_builder.replies
inputs: # Define the inputs for your pipeline
query: # These components will receive the query as input
- "bm25_retriever.query"
- "query_embedder.text"
- "ranker.query"
- "prompt_builder.question"
- "answer_builder.query"
filters: # These components will receive a potential query filter as input
- "bm25_retriever.filters"
- "embedding_retriever.filters"
outputs: # Defines the output of your pipeline
documents: "pdf_to_image.documents" # The output of the pipeline is the retrieved documents
answers: "answer_builder.answers" # The output of the pipeline is the generated answers
Init Parameters
Parameter | Type | Possible values | Description |
---|---|---|---|
detail | Literal | auto low hight Default: auto | Controls how the model processes the image and generates its textual understanding. By default, the model uses the auto setting which checks the image input size and chooses the best setting to use. For details see OpenAI documentation.Required. |
Updated about 2 months ago