DeepsetNvidiaRanker
Rank documents by their relevance to the query using NVIDIA Triton.
Basic Information
- Pipeline type: Query
- Type:
deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
- Components it most often connects to:
- Retrievers:
DeepsetNvidiaRanker
can receive documents from a Retriever and then rank them. - PromptBuilder:
DeepsetNvidiaRanker
can send the ranked documents toPromptBuilder
, which adds them to the prompt for the LLM. - Any component that outputs a list of documents or accepts a list of documents as input.
- Retrievers:
Inputs
Name | Type | Default | Description |
---|---|---|---|
query | String | - | The query used for ranking documents by their similarity to the query. |
documents | List of Document objects | - | The documents to be ranked. |
top_k | Integer | None | The maximum number of documents to return. |
scale_score | Boolean | None | Indicates if the score should be scaled. Possible values:True : Scales the raw logit predictions using a Sigmoid activation function.False : Disables scaling raw logit predictions. |
calibration_factor | Float | None | The factor to calibrate probabilities with sigmoid(logits * calibration_factor) . Used only if scale_score=True . |
score_threshold | Float | None | Returns only documents with a score above this threshold. |
Outputs
Name | Type | Description |
---|---|---|
documents | List of Document objects | The ranked documents sorted in descending order from the most similar to the query to the least similar. |
Overview
DeepsetNvidiaRanker
uses the NVIDIA Triton Inference Server to rank documents by their similarity to the query, assigning similarity scores to each document.
This component runs on optimized hardware and is usable within deepset Cloud only, which means it doesn't work if you export it to a local Python file. If you're planning to export, use TransformersSimilarityRanker instead.
Usage Example
This is an example of a query pipeline where DeepsetNvidiaRanker
receives documents from a DocumentJoiner
, ranks them, and then returns them as the pipeline output.
Here's the YAML configuration:
components:
bm25_retriever:
type: haystack_integrations.components.retrievers.opensearch.bm25_retriever.OpenSearchBM25Retriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
use_ssl: true
verify_certs: false
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- ${OPENSEARCH_USER}
- ${OPENSEARCH_PASSWORD}
embedding_dim: 768
similarity: cosine
top_k: 20
embedding_retriever:
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
use_ssl: true
verify_certs: false
hosts:
- ${OPENSEARCH_HOST}
http_auth:
- ${OPENSEARCH_USER}
- ${OPENSEARCH_PASSWORD}
embedding_dim: 768
similarity: cosine
top_k: 20
document_joiner:
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
DeepsetNvidiaTextEmbedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
init_parameters:
model: intfloat/multilingual-e5-base
prefix: ''
suffix: ''
truncate: null
normalize_embeddings: false
timeout: null
backend_kwargs: null
DeepsetNvidiaRanker:
type: deepset_cloud_custom_nodes.rankers.nvidia.ranker.DeepsetNvidiaRanker
init_parameters:
model: intfloat/simlm-msmarco-reranker
query_prefix: ''
document_prefix: ''
top_k: 10
score_threshold: null
meta_fields_to_embed: null
embedding_separator: \n
scale_score: true
calibration_factor: 1
timeout: null
backend_kwargs: null
connections:
- sender: bm25_retriever.documents
receiver: document_joiner.documents
- sender: embedding_retriever.documents
receiver: document_joiner.documents
- sender: DeepsetNvidiaTextEmbedder.embedding
receiver: embedding_retriever.query_embedding
- sender: document_joiner.documents
receiver: DeepsetNvidiaRanker.documents
max_runs_per_component: 100
metadata: {}
inputs:
query:
- bm25_retriever.query
- DeepsetNvidiaTextEmbedder.text
- DeepsetNvidiaRanker.query
filters:
- bm25_retriever.filters
- embedding_retriever.filters
outputs:
documents: DeepsetNvidiaRanker.documents
Init Parameters
Parameter | Type | Possible values | Description |
---|---|---|---|
model | String | Default: intfloat/simlm-msmarco-reranker | The model to use for ranking. Currently only the intfloat/simlm-msmarco-reranker model is supported.Required. |
query_prefix | String | Default: "" | String to prepend to queries. Required. |
document_prefix | String | Default: "" | String to prepend to documents. Required. |
top_k | Integer | Default: 10 | Maximum number of documents to return. Required. |
score_threshold | Float | Default: None | Minimum score threshold for returned documents. Required. |
meta_fields_to_embed | List of strings | Default: None | List of metadata fields to include in embedding. Required. |
embedding_separator | String | Default: "\n" | Separator for concatenating metadata fields. Required. |
scale_score | Boolean | Default: True | Whether to scale the scores using a sigmoid function. Required. |
calibration_factor | Float | Default: 1.0 | Factor to calibrate probabilities when scaling scores. Required. |
timeout | Float or None | Default: None | Timeout in seconds for the Triton server requests. Required. |
backend_kwargs | Dictionary | Default: None | Additional keyword arguments to pass to the backend. Required. |
Updated about 1 month ago