DeepsetNvidiaNIMDocumentEmbedder
Embed documents using embedding models by NVIDIA NIM.
Basic Information
- Pipeline type: Indexing
- Type:
deepset_cloud_custom_nodes.embedders.nvidia.nim_document_embedder.DeepsetNvidiaNIMDocumentEmbedder
- Components it most often connects with:
- PreProcessors:
DeepsetNvidiaDocumentEmbedder
can receive documents to embed from a PreProcessor, likeDocumentSplitter
. - DocumentWriter:
DeepsetNvidiaDocumentEmbedder
can send embedded documents toDocumentWriter
that writes them into the document store.
- PreProcessors:
Inputs
Name | Type | Description |
---|---|---|
documents | List of Document objects | The documents to embed. |
Outputs
Name | Type | Description |
---|---|---|
documents | List of Document objects | Documents with their embeddings added to the metadata. |
meta | Dictionary | Metadata regarding the usage statistics. |
Overview
NvidiaDocumentEmbedder
uses an NVIDIA NIM model to embed a list of documents. It then adds the computed embeddings to the document's embedding
metadata field.
This component runs on models provided by deepset on hardware optimized for performance. Unlike models hosted on platforms like Hugging Face, these models are not downloaded at query time. Instead, you choose a model upfront on the component card.
The optimized models are only available on deepset AI Platform. To run this component on your own hardware, use a sentence transformers embedder instead.
Embedding Models in Query and Indexing Pipelines
The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.
This means the embedders for your indexing and query pipelines must match. For example, if you use
CohereDocumentEmbedder
to embed your documents, you should useCohereTextEmbedder
with the same model to embed your queries.
Usage Example
This is an example of a DeepsetNvidiaNIMDocumentEmbedder
used in an indexing pipeline. It receives a list of documents from DocumentJoiner
and then sends the embedded documents to DocumentWriter
:

Here's the YAML configuration:
components:
joiner_xlsx: # merge split documents with non-split xlsx documents
type: haystack.components.joiners.document_joiner.DocumentJoiner
init_parameters:
join_mode: concatenate
sort_by_score: false
DeepsetNvidiaNIMDocumentEmbedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.nim_document_embedder.DeepsetNvidiaNIMDocumentEmbedder
init_parameters:
model: nvidia/nv-embedqa-e5-v5
prefix: ''
suffix: ''
batch_size: 32
meta_fields_to_embed:
embedding_separator: \n
truncate:
normalize_embeddings: true
timeout:
backend_kwargs:
writer:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
hosts:
index: default
max_chunk_bytes: 104857600
embedding_dim: 768
return_embedding: false
method:
mappings:
settings:
create_index: true
http_auth:
use_ssl:
verify_certs:
timeout:
policy: OVERWRITE
connections:
- sender: joiner.documents
receiver: DeepsetNvidiaDocumentEmbedder.documents
- sender: DeepsetNvidiaDocumentEmbedder.documents
receiver: writer.documents
Init Parameters
Parameter | Type | Possible values | Description |
---|---|---|---|
model | DeepsetNVIDIANIMEmbeddingModels | Default: NVIDIA_NV_EMBEDQA_E5_V5 | The model to use for calculating embeddings. Choose the model from the list. Required. |
prefix | String | Default: "" | A string to add at the beginning of each document text, useful for instructions required by some embedding models. Required |
suffix | String | Default: "" | A string to add at the end of each document text. Required |
batch_size | Integer | Default: 32 | The number of documents to embed at once. Required |
meta_fields_to_embed | List of strings | Default: None | A list of metadata fields to embed along with the document text. Required. |
embedding_separator | String | Default: "\n" | The separator used to concatenate the metadata fields to the document text. Required. |
truncate | EmbeddingTruncateMode | START , END , NONE Default: None | Specifies how to truncate inputs longer than the maximum token length. Possible options are: START , END , NONE .If set to START , the input is truncated from the start.If set to END , the input is truncated from the end.If set to NONE , returns an error if the input is too long.Required. |
normalize_embeddings | Boolean | True False Default: False | Whether to normalize the embeddings by dividing the embedding by its L2 norm. Required. |
timeout | Float | Default: None | Timeout for request calls in seconds. Required. |
backend_kwargs | Dictionary | Default: None | Keyword arguments to further customize the model behavior. Required. |
Run Method Parameters
These are the parameters you can configure for the component's run() method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
Parameter | Type | Description |
---|---|---|
documents | List of Document objects | The documents to embed. Required. |
Updated 7 days ago