Use NVIDIA Models
Use models from NVIDIA in your pipelines.
You can use self-hosted models from the NVIDIA API catalog or models deployed on NVIDIA NIM.
Prerequisites
You need an active NVIDIA API key. For details on how to obtain it, see NVIDIA documentation.
Use NVIDIA Models
First, connect deepset Cloud to NVIDIA through the Connections page:
-
Click your initials in the top right corner and select Connections.
-
Click Connect next to the provider.
-
Enter your user access token and submit it.
Then, add a component that uses a model hosted on NVIDIA to your pipeline. Here are the components by the model type they use:
- Embedding models:
- NvidiaTextEmbedder: Uses an embedding model to calculate vector representations of text. Often used in query pipelines to embed the query string and send it to an embedding retriever.
- NvidiaDocumentEmbedder: Uses an embedding model to calculate embeddings of documents. Often used in indexing pipelines to embed documents and send them to DocumentWriter.
Embedding Models in Query and Indexing Pipelines
The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.
- LLMs:
- NvidiaGenerator: Generates text using models from NVIDIA. Often used in RAG pipelines.
Usage Examples
This is a YAML example of how to use embedding models and an LLM hosted on NVIDIA in indexing and query pipelines (each in a separate tab):
components:
...
query_embedder:
type: haystack_integrations.components.embedders.nvidia.text_embedder.NvidiaTextEmbedder
init_parameters:
api_url: "https://ai.api.nvidia.com/v1/retrieval/nvidia" # custom API URL for NVIDIA NIM.
model: "NV-Embed-QA" # the model to use
retriever:
type: haystack_integrations.components.retrievers.opensearch.embedding_retriever.OpenSearchEmbeddingRetriever
init_parameters:
document_store:
init_parameters:
use_ssl: True
verify_certs: False
http_auth:
- "${OPENSEARCH_USER}"
- "${OPENSEARCH_PASSWORD}"
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
top_k: 20
prompt_builder:
type: haystack.components.builders.prompt_builder.PromptBuilder
init_parameters:
template: |-
You are a technical expert.
You answer questions truthfully based on provided documents.
For each document check whether it is related to the question.
Only use documents that are related to the question to answer it.
Ignore documents that are not related to the question.
If the answer exists in several documents, summarize them.
Only answer based on the documents provided. Don't make things up.
If the documents can't answer the question or you are unsure say: 'The answer can't be found in the text'.
These are the documents:
{% for document in documents %}
Document[{{ loop.index }}]:
{{ document.content }}
{% endfor %}
Question: {{question}}
Answer:
generator:
type: haystack_integrations.components.generators.nvidia.generator.NvidiaGenerator
init_parameters:
model: "meta/llama3-70b-instruct" # here, pass the name of the model to use
api_url: "https://integrate.api.nvidia.com/v1"
model_arguments:
temperature: 0.2
top_p: 0.7
max_tokens: 1024
answer_builder:
init_parameters: {}
type: haystack.components.builders.answer_builder.AnswerBuilder
...
connections:
...
- sender: query_embedder.embedding
receiver: retriever.query_embedding
- sender: retriever.documents
receiver: prompt_builder.documents
- sender: prompt_builder.prompt
receiver: generator.prompt
- sender: generator.replies
receiver: answer_builder.replies
...
components:
...
splitter:
type: haystack.components.preprocessors.document_splitter.DocumentSplitter
init_parameters:
split_by: word
split_length: 250
split_overlap: 30
document_embedder:
type: haystack_integrations.components.embedders.nvidia.document_embedder.NvidiaDocumentEmbedder
init_parameters:
api_url: "https://ai.api.nvidia.com/v1/retrieval/nvidia" # A required custom NVIDIA API URL for NVIDIA NIM
model: "NV-Embed-QA" # the model to use
writer:
type: haystack.components.writers.document_writer.DocumentWriter
init_parameters:
document_store:
type: haystack_integrations.document_stores.opensearch.document_store.OpenSearchDocumentStore
init_parameters:
embedding_dim: 768
similarity: cosine
policy: OVERWRITE
connections: # Defines how the components are connected
...
- sender: splitter.documents
receiver: document_embedder.documents
- sender: document_embedder.documents
receiver: writer.documents
This is how to connect the components of the query pipeline in Pipeline Builder:
Then the generator:
In indexing pipeline, the Document Embedder should use the same model as the Text Embedder in the query pipeline:
Updated 3 days ago