DeepsetNvidiaNIMTextEmbedder
Embed strings of text using embedding models by NVIDIA NIM on optimized hardware.
Basic Information
- Pipeline type: Query
- Type:
deepset_cloud_custom_nodes.embedders.nvidia.text_embedder.DeepsetNvidiaTextEmbedder
- Components it most often connects with:
- Query:
DeepsetNvidiaDocumentEmbedder
receives the query to embed fromQuery
. - Embedding Retrievers:
DeepsetNvidiaDocumentEmbedder
can send the embedded query to an Embedding Retriever that uses it to find matching documents.
- Query:
Inputs
Name | Type | Description |
---|---|---|
text | String | The text to embed. |
Outputs
Name | Type | Description |
---|---|---|
embedding | List of floats | The embedding of the text. |
meta | Dictionary | Metadata regarding the usage statistics. |
Overview
NvidiaDocumentEmbedder
uses an NVIDIA NIM model to embed a text string, such as a query.
This component runs on models provided by deepset on hardware optimized for performance. Unlike models hosted on platforms like Hugging Face, these models are not downloaded at query time. Instead, you choose a model upfront on the component card.
The optimized models are only available on deepset AI Platform. To run this component on your own hardware, use a sentence transformers embedder instead.
Embedding Models in Query and Indexing Pipelines
The embedding model you use to embed documents in your indexing pipeline must be the same as the embedding model you use to embed the query in your query pipeline.
This means the embedders for your indexing and query pipelines must match. For example, if you use
CohereDocumentEmbedder
to embed your documents, you should useCohereTextEmbedder
with the same model to embed your queries.
Usage Example
This is an example of a DeepsetNvidiaNIMTextEmbedder
used in a query pipeline. It receives the text to embed from Query
and then sends the embedded query to OpenSearchEmbeddingRetriever
:

Here's the YAML configuration:
components:
DeepsetNvidiaNIMTextEmbedder:
type: deepset_cloud_custom_nodes.embedders.nvidia.nim_text_embedder.DeepsetNvidiaNIMTextEmbedder
init_parameters:
model: nvidia/nv-embedqa-e5-v5
prefix: ''
suffix: ''
normalize_embeddings: true
connections:
- sender: DeepsetNvidiaNIMTextEmbedder.embedding
receiver: OpenSearchEmbeddingRetriever.query_embedding
max_runs_per_component: 100
inputs:
query:
- DeepsetNvidiaNIMTextEmbedder.text
Parameters
Init Parameters
These are the parameters you can configure in Pipeline Builder:
Parameter | Type | Possible values | Description |
---|---|---|---|
model | DeepsetNVIDIAEmbeddingModels | Default: NVIDIA_NV_EMBEDQA_E5_V5 | The model to use for calculating embeddings. Choose the model from the list in Builder. Required. |
prefix | String | Default: "" | A string to add at the beginning of the string being embedded. Required. |
suffix | String | Default: "" | A string to add at the end of the string being embedded. Required. |
truncate | EmbeddingTruncateMode | START , END , NONE Default: None | Specifies how to truncate inputs longer than the maximum token length. Possible options are: START , END , NONE .If set to START , the input is truncated from the start.If set to END , the input is truncated from the end.If set to NONE , returns an error if the input is too long. Optional. |
normalize_embeddings | Boolean | True False Default: True | Whether to normalize the embeddings by dividing the embedding by its L2 norm. Required. |
timeout | Float | Default: None | Timeout for request calls in seconds. Optional. |
backend_kwargs | Dictionary | Default: None | Keyword arguments to further customize model behavior. Optional. |
Run Method Parameters
These are the parameters you can configure for the component's run()
method. This means you can pass these parameters at query time through the API, in Playground, or when running a job. For details, see Modify Pipeline Parameters at Query Time.
Parameter | Type | Description |
---|---|---|
text | String | The text to embed. Required. |
Updated 7 days ago